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I. INTRODUCTION

Hello! I’m Nicholas Gurnard, a Robotics Engineering
student interested in controls, testing, modeling, and
simulation for robotic systems. I am passionate about the
intersection of hardware and software, and would love a role
that has the opportunity to work on both in some capacity.
Highly curious and am willing to learn and adapt quickly
with efficient and purposeful communication.

As seen in this portfolio, I have broad coverage in topics
such as trajectory/motion planning, computer vision, state
estimation and filtering, controls, optimization, machine/deep
learning, computer graphics, and more! NOTE: this portfolio
is still being updated and takes time! Computer graphics and
deep learning projects coming soon.

II. AUTONOMOUS VIO DRONE
SPRING 2022

A. Introduction and System Overview

The objective of this project was to implement and tune a
controller, waypoint generator, path planner, and visual state
estimation algorithm (VIO - Visual Inertial Odometry) through
a known map with a quadrotor in both simulation and on
real hardware (Crazyflie quadrotor). The controller, planner,
and estimation system were estimated within a custom python
simulation environment encapsulating real Crazyflie model
dynamics and then tested within a Vicon lab using the same
maps that were tested in simulation.

For integration of our controller, trajectory planner, path
planner, and VIO estimator with the Vicon space and Crazyflie,
ROS (Robot Operating System) [1] was used to link all the
devices and code together. The Crazyflie has several small
reflective markers on its frame, which allow the Vicon camera
system to track its position within the space to obtain the
ground truth of the state in order to be compared against
the VIO estimation algorithm and for tuning the controller.
Before testing the VIO estimator, the Vicon system was used
to stream the quadrotor’s position data to a ROS node, which
was used in the control loop that runs on the lab computer
(effictively using the ground truth so the quadrotor didnt crash
during controller tuning because of the state estimator). The
controller, trajectory planner, and path planner all run locally
on the lab computer and communicate outputs to ROS, which
then relays low level commands (motor speeds and thrust) to
the Crazyflie’s onboard controller.

B. Controller

The controller used on the quadrotor was a geometric
nonlinear controller. The block diagram of the nested control
loop is shown in Fig 1. The coordinate system of the quadrotor
is shown in Fig 2. The controller is based on the geometric
intuition that we point the quadrotor’s b3 axis in the desired
direction and direction of applied thrust generated by the
motors.



Figure 1: The Position and Attitude Control Loop [2]
.

Figure 2: Quadrotor Coordinate System
.

More specifically, the controller is built with an outer loop
and an inner loop. The outer loop is a PD position controller
which can be described with

r̈des = r̈T −Kd(ṙ − ṙT )−Kp(r − rT ) (1)

Where, r is the current position vector of the quadrotor in the
world frame, rT is the desired position vector of the quadrotor
in the world frame. From Eq. 1, the combined thrust (u1) of
the four motors can be calculated with

u1 = bT3 F
des = bT3 (mr̈des +

[
0 0 mg

]T
) (2)

Where, bT3 is the coordinate vector of the quadrotor’s b3 axis
with respect to the world frame, m is the weight of the
quadrotor, and g is the gravity factor.

The inner loop is a PD attitude controller described by

u2 = I(−KReR −Kωeω) (3)

Where, u2 is formed by the torque generated by each motor,
I is quadrotor’s inertia, eR is the error between the current
orientation and the desired orientation, eω is the error between
the current angular velocity and the desired angular velocity.
eR can be calculate with

eR =
1

2
(RdesTR−RTRdes)∨ (4)

Where, R is the current rotation matrix,Rdes =[
1b2

des × b3
des b2

des b3
des

]T
is the desired rotation

matrix. The ∨ operator is the inverse of the hat operator,
which converts a 3x3 matrix into a 3x1 vector, as follows.

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


ω × b = [ω̂][b]

In the equation 1 and 3, the Kd,Kp,KR,Kω are diagonal
positive definite gain matrices. Approximate values for a 2 part
phycial lab experimanet are as follows: // For the experiment
part one:

kp =
[
3.36 3.36 3.78

]
, unit s−2;

kd =
[
5.04 5.04 3.5

]
, unit s−1;

kr =
[
210.7 210.7 92.4

]
, unit s−2;

kω =
[
14 14 10.5

]
, unit s−1;

For the experiment part two:
kp =

[
5 5 5

]
, unit s−2;

kd =
[
3.5 3.5 3.5

]
, unit s−1;

kr =
[
3750 3750 135

]
, unit s−2;

kω =
[
100 100 20

]
, unit s−1;

In this experiment, kp and kd are used to control the position
of the quadrotor. More specifically: kp is the proportional gain,
which directly affects the position error and can increase the
system error-reaction speed and accuracy. kd is the derivative
gain, which directly affects the linear speed error. In practice,
we increased the P gain until there is overshooting, and then
increased the D gain to reduce (or eliminate) the overshooting.
The P and D gains were then incrementally increased until the
response time was satisfactory. kr and kω are used to control
the orientation of the quadrotor. More specifically: kr works
similar to kp, directly affecting the orientation error and kω
works similar to kd, directly affecting the angular velocity
error.

When controlling the quadrotor, the control command com-
mands the motor speeds. However, from the position controller
we can only get the four-motors’ combined thrust (u1), and
from the attitude controller we can only get the torque of each
motor (u2). Therefore, none of them can be directly used as a
command for the quadrotor’s motors. In order to control the
quadrotor’s motion as what we expected, we need to later on
use the thrust and torque to calculate and recover each motor’s
speed and use that to command the quadrotor.

From the experiment, it was noticed that there are several
possible factors which can cause differences between the
experiment and the simulation. First is the weight of the
quadrotor: from Eq. 2 we know that the weight of the quadro-
tor will directly influence the computed thrust. Therefore,
the difference between the simulation and reality weight will
cause a b3 direction position shift and thus we may need to
adjust the quadrotor’s weight in the simulation code to achieve
a better performance. Additionally, the uneven distribution
of the quadrotor mass may cause drifting to the direction
with the higher weight. Second is the motor saturation: in
the simulation the performance of the motor is always ideal,
however in the reality the motors cannot produce as much
speed as we want due to the motor saturation. Therefore, we
adjusted the control gains to achieve a better performance.
Note: in simulation the motor saturation was accounted for,
however it did not account for the nonlinear speed trend seen
in real motors.

The performance of the position controller is shown in
Figure 3.



Figure 3: Position vs Time step response plot

From Figure 3 it is known that the overshoot for this control
curve is near 0.06

0.8 = 7.5%. This number was brought down
to approximately 4.5% was some tuning effort. In simulation,
the overshoot was 3.9%.

overshoot = e−ξπ/
√

1−ξ2 ∗ 100% (5)

The approximate damping ratio was calculated to be ap-
proximately 0.7 (same as simulation). From the curve we can
read that: the steady state error is about 0.85−0.80 = 0.05m,
which may be caused by the quadrotor weight difference
between the simulation and the experiment discussed earlier.
The simulation SS error was approximately 0. The rise time is
about 1.1s (1.1s simulation!) and settling time is about 1.6s
(2s simulation!).

The orientation performance (plot not shown) of the quadro-
tor showed slightly higher overshoot (10 − 12%), however
with significantly less rise time (0.015s) and settling time
(0.6s), which is expected of the attitude controller since a
much more aggressive controller is necessary for good flight
performance. Simulation showed an overshoot of 12.5%, a rise
time of 0.01s, and a settling time of 0.5s. The performance of
this controller was determined reasonable and relatively good
for a high speed environment with average obstacle density.
In a high density environment, a slightly better performing
quadrotor would be needed (note: this is likely due to a
hardware limitation - the tuning was comparatively very good
for what we had).

C. Trajectory Generator

A map of a known environment was first discretized into
voxels of a user specified resolution. This map was then
converted from the workspace W ⊂ R3 to the configuration
space C ⊂ R3 such that the drone could be abstracted
into a point, allowing the optimal path to be computed
using standard graph search algorithms. Workspace obstacles
were represented in the C-space by inflating the obstacle
using the known geometry of the quadrotor plus some
margin. The optimal path from a specified start point to
goal point was computed within the free-space of the
C-space using the A∗ algorithm. The chosen heuristic
used within the A∗ algorithm was the Euclidean Distance in
R3 since it is always admissible and consistent in this context.

Figure 4: Ramer-Douglas-Peuker algorithm pseudocode [4]

Given the set of waypoints generated by the A∗ graph search
algorithm, the Ramer-Douglas-Peuker (RDP) [3] algorithm
was used to prune the path so that points that were colinear
or near colinear were eliminated from the path, albeit the
endpoints of the line. RDP works recursively as shown in
Figure 4.

RDP often prunes the path too much or not enough since it
is mainly used to prune colinear or near colinear points. The
path was further pruned by eliminating points that were too
close together given a certain tunable minimum threshold.
Each voxel had 26 neighboring voxels, including diagonals,
and thus the minimum threshold was approximately the size
of 2 times the diagonal voxel distance to a neighboring voxel.
If the path became over-pruned from RDP and eliminating
close voxels, waypoints were injected back into the path if 2
consecutive voxels were at a distance away from each other
that is greater than a tunable user defined maximum threshold.

The importance of pruning the planned path well is because
of the time allocation in the trajectory generation. The quadro-
tor flies with nonlinear dynamics, and thus time allocation
between waypoints is also nonlinear. The function to compute
the time allocation is not known, and thus optimally pruning
the waypoints is critical for a smooth, safe, and achievable
trajectory. With an optimall pruned path, the time allocation
between waypoints was computed as follows:

1) Specify an average trajectory velocity
2) Compute Euclidean Distance between waypoints
3) Compute time between waypoints as:

T = distance1/3

vavg

Depending on the map geometry, it is sometimes better to
use a fraction of 1

2 instead of 1
3 in the exponent of distance

in step 3. It is also critical to allow time for acceleration and
deceleration at the beginning and end of the trajectory. The



time for the first and last segment were multiplied by a factor
of 2 and 1.5 respectively. Without these, the trajectory was
too aggressive or the drone would hit a wall. With proper
time allocation and path pruning, the smoother trajectory
meant the VIO alogithm could track features better and get a
better estimate of its current state.

The RDP algorithm was DRASTICALLY improved with
the implementation of a ray tracing algorithm. Given the set
of dense waypoints from the path planner, instead of pruning
with RDP, the ray tracing algorithm solved the issues related
to pruning too much or too little, and also improved upon
the difficulty of tuning the time allocation. The ray tracing
algorithm works by looping through every point in the path
starting at the first point. For each future point after the current
point in the loop, draw a vector between the current point
and all future points. The future point that is farthest from
the current point while not having any obstacle along the
constructed is kept (meaning there is no collision), all other
points between are pruned. Then the algorithm continues until
it moves through the entire path. Figure 5 shows an illustration
of the algorithm for a single point early in the trajectory. This
pruning algorithm allowed for long segments in which the
drone can move quickly, but also smoothly.

Figure 5: Ray tracing (line-of-sight) pruning algorithm. Pink
= potential future points.

To prove the smoothness and effectiveness of the planned
trajectory with the ray tracing pruning algorithm, plots of the
acceleration and jerk were compared. The comparisons are
shown in Figures 6, 7, and 8. It can be seen that the ray tracing
algorithm created the smoothest acceration and jerk curves.

Figure 7: RDP Pruning

Figure 8: Ray Tracing Pruning

Figure 6: No Pruning

Given the time between waypoints, a minimum snap trajec-
tory was implemented. The optimal minimum snap trajectory



was computed with

x∗(t) = argmin
x(t)

∫ T

0

L(x(4),
...
x , ẍ, ẋ, x, t)dt (6)

Where L(x(4),
...
x , ẍ, ẋ, x, t) is the running cost for snap

(fourth derivative; n = 4). This minimization can be solved
with the Euler Lagrange equation since it is a necessary
condition satisfied by x∗(t).

∂L
∂x

+
d

dt
(
∂L
∂ẋ

)(−1)n + · · ·+ dn

dtn
(

∂L
∂x(n)

)(−1)n = 0

∂L
∂x

− d

dt
(
∂L
∂ẋ

) +
d2

dt2
(
∂L
∂ẍ

)− d3

dt3
(
∂L
∂

...
x
) +

d4

dt4
(

∂L
∂x(n)

)

= x(8) = 0

x = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5 + c6t
6 + c7t

7 (7)

Equation 7 is a polynomial of degree (2n − 1) with 8
unknowns. A trajectory of m segments can therefore have 8m
total unknowns that must be computed. The 8m unknowns, c̄
can be computed by solving Ac̄ = b, where A ∈ R8mx8m,
c̄ ∈ R8mx1, and b ∈ R8mx1. b can be formulated by taking the
derivative of equation 7. The start and end points of the full
trajectory can have constraints up to degree x(n−1) = x(3),
which satisfies 8 of the 8m necessary constraints.

...
x start,end, ẍstart,end, ẋstart,end, xstart,end = 0

For intermediate waypoints, continuity constraints were de-
fined up to the 2(n− 1)th derivative, satisfying the remaining
constraints. The time at the beginning of each segment is
considered as time 0, and the time at the end of each segment
is tmi . The following is an example of constraints between
segment 1 and segment 2:

x1(t1) = x1; x2(0) = x1

ẋ1(t1) = ẋ2(0); ẍ1(t1) = ẍ2(0)
...
x1(t1) =

...
x2(0); x

(4)
1 (t1) = x

(4)
2 (0)

x
(5)
1 (t1) = x

(5)
2 (0); x

(6)
1 (t1) = x

(6)
2 (0)

Given all endpoint and continuity constraints, Ac̄ = b can
now be solved explicitly for c̄. The following link provides an
example of Ac̄ = b given only 2 segments: LINK HERE. The
following link provides an example of Ac̄ = b given only 3
segments: LINK HERE.
Given a time t, now that all constraints c̄ are solved, a desired
flat output and its derivatives can be computed for the entire
trajectory using Equation 7 and its derivatives. This flat output
is then mapped to states and inputs in order to control the
quadcopter with minimum snap.
A plot of quadcopter position error and velocity are shown in
Figures 15 and 16. The planned trajectory was highly smooth
and feasible, especially at lower speeds. At higher speeds,
the trajectory became less smooth/feasible since the planned
trajectory demanded more aggressive maneuvers, discussed
more in section II-E.

D. VIO Based State Estimator (ESKF) and Yaw Control

The state of the quadrotor was estimated using VIO instead
of the ground truth with the Vicon, thus, aggressive maneuvers
would result in poor state estimates. This was implemented
with an Error-State Kalman Filter (Complementary filter was
used in the experiment due to the faster compute speed)
where the input data was stereo correspondence data and
IMU onboard data (gyroscope and accelerometer). The stereo
correspondences were computed with RANSAC and least
squares solving. In the ESKF, aggressive maneuvers would
result in higher noise in the IMU since the acceleration, which
is more noisy with aggressive maneuvers, must be integrated
to get the velocity and position thus further propagating the
error. Additionally, the VIO algorithm uses stereo images to
extract and track features. With aggressive maneuvers, feature
tracking and feature matching becomes more noisy, resulting
in dropped features, and thus the measurement from the
camera becomes less trustworthy in the ESKF. The error state
covariance matrix would then reflect the extra noise in the poor
vision measurement, and thus the Kalman gains would reflect
this poor measurement. This would potentially result in your
filter trusting the the wrong (more noisy) sensor such as the
IMU over the vision measurement. Additionally, having too
aggressive of a controller can saturate the motors, meaning
the drone will not be able to maneuver as aggressively as
demanded, and may result in a crash.

Figure 9: Accelerometer bias without initial hovering

Throughout the trajectory, the drone maintained the same
yaw heading without yaw control. In the case where the tra-
jectory was not along the optical axis of the stereo camera, the
drone was effectively tracking features that were to the side of
it rather than in front of it. Without yaw control on a physical
drone, features not along the optical axis, which usually points
forward on the drone’s body frame, are not informative and
are likely to be dropped (more feature correspondences =
better state estimate in general) when using a feature tracking
algorithm such as Lukas-Kanade optical flow (in simulation,
feature tracking/correspondence is perfect and trivial). Track-

https://docs.google.com/spreadsheets/d/1LkOwOcK4JZ5Pn53pBMxvrsLx6pzynjQyhZfIRE_jdR4/edit#gid=0
https://docs.google.com/spreadsheets/d/1-HQjiHCmPX-2-rfdhisAGq08Gp73YX3z/edit?usp=sharing&ouid=108902278959400811514&rtpof=true&sd=true


Figure 10: Accelerometer bias with initial hovering

ing features in real life is much more difficult when they are
estimated and the drone is moving quickly. Therefore, yaw
control was implemented by setting yaw_control = True in
world_traj.py. The velocity vector of the flat output at
each timestep was projected onto the x-y plane in order to
find the yaw angle relative to the initial orientation using the
euqation projk⃗

N⃗
= (k⃗ · N⃗)/||N⃗ ||2 ∗ N⃗ . The veclocity vector

was first projected onto the vector N⃗ which is normal to the
x-y plane, then the projected vector on the x-y plane was
computed using vector addition: projk⃗XY = k⃗−projk⃗

N⃗
. The yaw

heading angle was then computed using inner-product of the
projected vector and the y-axis (initial optical axis direction):
θ = arccos(y⃗ · projk⃗XY ). Since R(arccos) = [0, π], θ was
multiplied with sign(y⃗ × projk⃗XY ) in order to cover the range
[0, 2π]. At angles of 0, π, the quad experienced yaw angle
wrap around sometimes making the drone spin 180◦, which
can be fixed with some post processing (ran out of time).

Because the error state covariance matrix and gyro-
scope/accelerometer biases are difficult to know in reality,
they are initialized to random values in practice. Because of
this, the initial covariance and bias values are likely far from
the truth at the start of the trajectory. Beginning to fly while
the estimated biases and covariance are poor would result in
an extremely poor state estimate, and thus the drone would
struggle to localize and accurately track the desired trajectory.
Making the drone to hover for a short period, say between
1
4 to 1 second, allowed for the bias values and covariance to
converge before flight by getting readings from the IMU and
VIO with minimal noise and accurate feature tracking. Having
a more accurate covariance matrix, which directly influences
the Kalman gain in the ESKF, makes it such that the quad
trust the sensor with more accurate readings. Implementing a
brief hover period resulted in more successful tracking of the
trajectory. To visualize the effectiveness of initially hovering,
Figures 9 and 10 shows how the bias estimate is more stable,
i.e. does not drift from the true bias as much, throughout the
trajectory.

E. Maze Flight Experiments

The objective of this section is to give a review of the results
obtained in the experiments. Figures 11, 12, 13 show 3D plots
of the obstacles, waypoints, the planned trajectory, and the
actual flight of each enviroment experimented on. It is clear
that for maze 1 and maze 2 the actual flight is close to the
simulated one. In the case of maze 3, the difference is much
more significant.

Figure 11: Obstacles, waypoints, planed trajectory, actual
flight: Map 1

Figure 12: Obstacles, waypoints, planed trajectory, actual
flight: Map 2



Figure 13: Obstacles, waypoints, planed trajectory, actual
flight: Map 3. Note: the planned trajectory had a lower ceiling
in simulation than in experimentation, and thus the actual flight
path went over an obstacle instead of around because that was
more optimal.

As mentioned, we were able to run the experiments for
all maps at 1, 1.5, and 1.8 m/s speeds. Figure 14 presents the
position and velocity vs. time for map1 at 1.5 m/s. The position
plot presents a smooth trajectory, which is exactly what was
desired with the minimum snap trajectory. The velocity of the
quadrotor changed more aggressivley, however the velocity
curves are still smooth and controlled, and do not exhibit any
indication of wobble during flight (success!).

Figure 14: Position and Velocity over time for map 1 at 1.5
m/s.

To analyze tracking error, the position/velocity from simu-
lation data for maze1 at a speed of 1 m/s was compared to
the actual position/velocity obtained in the experiment. The
simulation used a sampling rate 5x that of the Vicon records,
so this had to be accounted for when overlaying. Additionally,
the plots were manually aligned in time. From Figures 15 it
can be observed that the approximate position error between
the simulation and the experimental trajectory are 3.66% for
x, 2.33% for y, and -22.74% for z. The error in z is large
because of the weight differential between the experiment and
simulation discussed earlier. The actual weight used in the

experiment was 1.175 * drone_weight, reducing the tracking
error considerably to approximately 2%. Since the tracking
error was excellent at 1m/s, the speed was incremented to
1.5m/s and 1.8m/s.

Figure 15: Position Error Tracking

Figure 16: Velocity Error Tracking

F. Conclusion

This project was a huge success and I learned an incredible
amount about the sim-to-real gap, state estimation, controller
design and tuning, path planning, trajectory optimization, and
more. In a competition of approximately 100 students, my
experimentation team (Team of 4 - Jessica Yin, Luis Escobar,
Tianyun Zhao, and me) had the best experimental drone flight
and was able to perform the most aggressive maneuvers and
complete the planned trajectories the fastest. In simulation, my
personal (solo - no team) code placed 2nd in the competition
across a series of maps, shown in the Figure 17 (Note - my
name was Gick Nurnard which is just a play on my name by
swapping the first letters of my first and last name).



Figure 17: Placed 2nd in racing competition of 100 competi-
tors

G. Videos and Github
Videos of the drone flying in the experiments can be

found at this video link: DRONE VIDEO LINK. The github
repository for this project can be found here: GITHUB LINK.

III. F1TENTH AUTONOMOUS RACING
SPRING 2023

The F1TENTH Autonomous Racing Challenge uses an
outfitted Traxxas car equipped with a Jetson Nano to au-
tonomously race up to 40mph. This project included algorithm
development in navigation and path/trajectory planning, mo-
tion planning, optimization for MPC and racelines, computer
vision and deep learning, controls, and more. The repositories
for all of the projects can be found on my github, each
repo having the prefix “f1tenth_” and then the name of the
algorithm developed. Each repository consists of a ROS2 foxy
node that can be cloned directly onto the F1TENTH platform
and be ready to race. The repository “f1tenth_interfaces”
is required for pure pursuit nodes because it has a custom
message for the waypoints. Please find my GitHub HERE.
The following video shows a lot of clips during the F1TENTH
Journey: LINK. Videos of the car in action can be found in
the SUBMISSION.md of each of the repositories (PS - it is
really cool, go check it out!).

The final project for the course was pitch control in mid-air,
as described in the following write-up: LINK

IV. ROBOTIC ARM - FRANKA-EMIKA PANDA
SPRING 2023

This project was a part of a class that focused on the
fundamental kinematic, dynamic, and computational principles
underlying most modern robotic systems. The main topics of
the course included: rotation matrices, homogeneous transfor-
mations, manipulator forward kinematics, manipulator inverse
kinematics, Jacobians, path and trajectory planning, sensing
and actuation, and feedback control. The material is reinforced
with hands-on lab exercises involving a robotic arm (Franka-
Emika Panda) after performing simulation in a Gazebo envi-
ronment. The final project of the course was an entirely self-
guided pick-and-place competition that was intentionally left
open-ended.

For the sake of preventing this document from getting
too large, the following links will redirect to reports written
throughout the course:

• Forward Kinematics (FK) Lab
• Velocity Inverse Kinematics (IK) Lab
• Optimization Based IK Lab
• Path and Trajectory Planning Lab - Artificial Potential

Field and RRT*
• Final Pick-and-Place Head-to-Head Competition

V. ENSEMBLE FILTERING - STATE ESTIMATION
SPRING 2022

A. Abstract

In time critical systems, it is essential that the state esti-
mation pipeline is quick and accurate. Current methods often
struggle to achieve both. In this project we attempt to rectify
this problem by constructing an ensemble filtering method by
combining the state estimates from multiple filters to get a
better overall estimate. The ensemble consists of fast, weak
learners that can compete with an accurate, but slow filtering
algorithm. There are 3 methods to form the ensemble: a simple
average, a perceptron network, and a dense neural network
with loss functions of MSE loss and a custom loss function.
We demonstrate that the performance of the ensemble, in
specific the dense neural network, is better than the individual
performance of each filter tested on the EuRoC dataset.

B. Introduction

State estimation of a robot is critical for any robotics pipeline,
where the Kalman filter variants are the backbone of most
modern state estimation algorithms. However, the dynamics
of a system are often hard to model, and thus a single
Kalman filter variant may not be able to capture all of
the intricacies of the dynamics. There are many variations
of the Kalman filter that attempt to reduce assumptions
about the system dynamics, for example the Unscented
Kalman Filter (UKF) and Error State Kalman Filter (ESKF),
however still rely on a simplification of the true model
dynamics [5]. Previous work has introduced the idea of
using multiple Kalman filters together in order to limit model
simplification and assumptions [6] [7] [8]. Additionally,
in a system that experiences rapid changes in its state, for
example aggressive drone flight, the Kalman filter can be slow
in recovering the true state once there is a major deviation [5].

When tasked with a real system, the speed of the filter is often
a bottleneck that causes the system to fail [9] [10]. However,
these same aggressive systems also rely on excellent state
estimation to avoid failure. Fast, but less accurate, filtering
algorithms are often the replacement for slow, accurate
algorithms [10]. In this project, we introduce the idea of
combining fast and less accurate filters together to get a better
state estimate while still saving on computation time.

The proposed algorithm has 2 main applications: time critical
systems that require an ensemble of fast but less accurate

https://youtu.be/JhxZ0LSvcOA
https://github.com/ngurnard/autonomous_vio_drone
https://github.com/ngurnard
https://youtu.be/VYHV9KDRZWE
https://www.overleaf.com/read/wbbprswcmtgz
https://www.overleaf.com/read/tvbfnzsqdkqt
https://www.overleaf.com/read/rrhrjdtpgcfv
https://www.overleaf.com/read/xgcdprktqnwk
https://www.overleaf.com/read/rghtgyfmwnhq
https://www.overleaf.com/read/rghtgyfmwnhq
https://www.overleaf.com/read/kywzgbhctmnc


filters, and delay tolerant systems that would allow for an
ensemble of several slow but extremely accurate filters. This
project borrows the ensemble learning idea from field of
machine learning, where several weak learners are combined
together in an ensemble to create a powerful unbiased es-
timator such as random forests, which can then be passed
through a neural network to capture the nonlinearity of the
dynamics [11] [12].

1) Contributions: We demonstrate that the performance of
the ensemble is better than the performance of each individual
filter for system state estimation. We present 3 methods to
combine the filters, namely simple averaging, a single layer
perceptron, and a neural network with loss functions of MSE
loss and custom loss function.

C. Background

Kalman filters are a family of algorithms that use a series of
sensor measurements observed over time and produce state
estimates for the system. The Kalman filter and its variants
broadly work in 2 stages, namely propagation step and update
step. In the propagation step, we use the estimate of the
state at time k and estimate the state at time k + 1 before
the observation arrives. Once the observation is received, the
update step is executed and the estimate of the state for time
k+ 1 is refined. This process is repeated recursively for each
new observation received.

If the system has linear dynamics, linear observation models,
and Gaussian noise in the sensor readings, the Kalman filter
is the most efficient state estimator. But as in most practical
systems, the system dynamics and/or the observation models
are nonlinear which lead to degraded performance on the
vanilla Kalman filters. There are many variations like UKF
and Extended Kalman Filters (EKF) which approximate the
nonlinear dynamics of the system to a linear function and
then use the propagate and update equations from the Kalman
filter algorithm. Since these variations approximate the
nonlinearity in the system dynamics, they are often noisy in
their estimates. Different filters use different techniques such
has Taylor series approximation, sigma points transformation
etc. for the non-linear to linear approximation.

The inspiration for ensemble systems comes from the idea of
random forests. In random forest algorithm, multiple decision
trees are combined to produce a prediction output. Each
decision tree in the ensemble is a weak learner but their
combination produces an efficient result that is unbiased. This
idea can be extended to filtering systems as well. Modern
robotics systems require fast and accurate filtering system for
efficient state estimation and trajectory tracking. An accurate
but slow filter and a fast but inaccurate filter can lead to poor
trajectory tracking and produce drifts in the robots movement.
Thus, in this project we develop an ensemble based filtering
system that uses multiple fast filters to produce an accurate
estimate of the system’s state.

D. Related Work

Multi stage filtering is an effective way to combine
measurements from various sensors. This idea is demonstrated
in [9] [13] [14]. [9] demonstrates a 3 stage system to combine
the sensor measurements from a stereo camera and IMU. It’s
implementation follows that of [13] where the IMU sensor
data is used to propagate the state of the system and when
the camera measurements are received the state update step is
performed. [14] implements the idea in [13] to run on-board
a quadrotor. This implementation is made highly optimized
for a edge-device to run full time.

There are several variations of Kalman filters to approximate
the non-linearity in the system dynamics. [8] implements
an unscented Kalman filter to estimate the orientation of
a non-linear system. [15] and [7] implement an extended
Kalman filter and error state Kalman filter respectively. [7]
implementation is VIO based while that of [8] is only inertial
odometry based filtering system. [16] describes a complimen-
tary filter approach to solving the filtering problem for non-
linear systems. The idea of using multiple filters to give a
more robust estimate is introduced in [6].

E. Approach

1) The Filter Variants Implemented to Incorporate in the
Ensemble: In this project we implement and ensemble the
UKF [8], ESKF [7] and Complementary Filter (CF) [16]. We
focus on orientation estimation since it is often the hardest
part of the state to estimate. The datasets used for all analyses
in this project come from the EuRoC MAV dataset [17]. The
EuRoC MAV dataset has 5 datasets of varied complexity levels
of drone flight. 2 datasets have a simple environment with
less aggressive maneuvers labeled “easy”, 1 dataset labeled
“medium” and 2 datasets labeled “hard”.

2) Training the Perceptron and Neural Network: The
datasets are split 60-40 into training and tests sets. Machine
Hall (MH) 01 (easy), MH-03 (medium) and MH-05 (hard)
were used for training the ensemble network and MH-02
(easy) and MH-04 (hard) were used for testing.

The filters assume that the origin of the world frame is
the initial pose of the drone at t0, which is different from
the Vicon (ground truth) world frame. In order to correctly
compare against the Vicon system, a corrective translation
and rotation was applied to all of the states of the filters
based on the Vicon initial pose. The corrected estimates from
the 3 filters are saved to later incorporate into the ensemble
for training.

The orientation estimates from the 3 ensemble filters were
stacked together along with the ground truth after aligning the
timestamps of the filter outputs. Aligning the filter outputs
is critical since the ESKF uses vision measurements and
IMU propogation while the CF and UKF rely on the IMU
only. Timestamp matching is performed by subtracting one
timestamp of the filter from all the timestamps in the ground



truth readings and then finding the argmin of the absolute
difference to find the index of the reading to consider. We
end up with 3 datasets of shape (N × 4), the 4th column
being the ground truth labels, which will be used to train 3
perceptron networks and 3 neural networks, one each for roll,
pitch and yaw. Each perceptron network takes 3 inputs at each
timestep and produces 1 linear estimate. Each neural network
takes 3 inputs at each timestamp and are passed through a
hidden layer of dimension 5 with a ReLU activation function,
which are then fully connected into a single estimate. The
predictions are compared with the ground truth estimates using
mean-squared-error (MSE) loss or custom loss function, which
is then used for backpropagation and updating the weights.
Since orientation estimates, namely roll, pitch, and yaw angles,
are nonlinear, the choice of loss functions evaluate a linear
distance loss (MSE) and an nonlinear function that considers
the double-cover with angle wrap around. In particular, the
loss between angles 359◦ and 1◦ should reflect an absolute
distance of 2◦ and not 358◦. The custom loss function takes
the following equation:

loss = |((θestimate − θtruth) + 180) mod (360)− 180| (8)

The optimizer we have used is the Adam optimizer which takes
in arguments for learning rate and a regularizing weight-decay
parameter.

3) Testing and Validation of the Ensemble: The training
dataset is split into training and validation datasets with a 80-
20 split. Mini-batches from the training dataset are used to the
train the network. Once the network is trained, it is verified
with the verification set and saved offline for testing. The saved
models are then tested on the datasets MH-02 and MH-04. The
performance of the model is evaluated by computing MSE loss
and the loss described in Equation 8 between the predicted
states and the ground truth values. The states obtained from
each filter, the ensemble state estimate, the simple average, and
the ground truth were then be plotted together for evaluation.

F. Experimental Results

The following figures illustrate the results for the dense
neural network ensemble with MSE loss, where ESKF is the
green line, UKF is the pink line, CF is the red line, the ground
truth is the black line, and the network output is the blue line.

Figure 18: Roll Estimates for Dataset 4

Figure 19: Pitch Estimates for Dataset 4

Figure 20: Yaw Estimates for Dataset 4



The following figures illustrate the results for simple average,
dense NN with MSE loss and ground truth, where simple
avearge is the red line, dense NN is the blue line and the
ground truth is the black line.

Figure 21: Simple average, Dense NN and GT comparision
for Dataset 4 for Roll

Figure 22: Simple average, Dense NN and GT comparision
for Dataset 4 for Pitch

Figure 23: Simple average, Dense NN and GT comparision
for Dataset 4 for Yaw
G. Discussion

Three methods were employed and tested to get the ensemble
estimate from the three filters. The methods employed were
simple average, perceptron network and a dense neural
network. Simple average worked well in scenarios where one
filter would be under-estimating the states while the other
filters would be over-estimating the states. Cases when all
the filters are either under-estimating or over-estimating, the
simple average would not perform well. Therefore, simple
averaging was not good for generalization, but roughly

followed the correct trend.

This result motivated us to build a perceptron network, one
each for roll, pitch and yaw. A linear activation function was
used in the perceptron network in order to get a weighted
average along with an Adam optimizer. The perceptron was
able to generalize better compared to the simple average and
handle the situation better when all the filters are either under-
estimating or over-estimating. The only place where it would
fail to work is when the quaternion flips, which is the same
as the aforementioned double-cover of angles (angle wrap-
around). From the instance the network is faced with an angle
wrap-around issue, the error cascades to all the estimates after
that instant and results in a poor ensemble estimation of states.

In order to deal with the set-backs experienced with the
simple average and the perceptron, a few different approaches
were tried to deal with angle wrap-around. One of the
approaches was to try a different loss function. The loss
functions that we compared were the MSE loss function
and the custom loss function in Equation 8. The purpose
of the custom loss function has been discussed in section
4.2. Upon evaluation, it was observed that the MSE loss
performed better than the custom loss function since the
angle wrap-around has not been dealt with in the ground
truth data and hence, it was not required of the loss
function to deal with this. The network is required to
learn to fit a line as closely as possible to the ground truth
and hence the MSE loss function performed better at this task.

Another solution to deal with the setbacks was to create a
dense neural network. The architecture of the dense network
has also been discussed in section 4.2. Since this was a
complex network compared to a simple perceptron, it was
able to capture the nonlinearity of anglular data and therefore
generalize better to then predict estimates with a lower margin
of error. It was still unable to handle the angle wrap-around
perfectly, but even after the angle wrap-around instance, the
error would not cascade to the future estimates and hence
would be able to predict estimates relatively well for the
future timesteps. For datasets that experienced no angle wrap
around, the performance of the dense neural network was
extremely good as seen in Figure 19 and Tables I II.

In Tables I II, it can be seen that the perceptron and dense
neural networks generalized best for roll and pitch. However,
yaw experienced the most instances of angle wrap-around
and therefore generalized poorly. On the other hand, the
custom loss function designed to handle angle wrap-around
generalized best for yaw, but struggled with roll and pitch.
Using the MSE loss function for roll and pitch and the custom
loss function for yaw is expected to yield the best results.

Since the main challenge for network generalization was angle
wrap-around, it can be expected that modifying each filtering
algorithm to preprocess the double cover (i.e. unwrap the



RMSE between filter estimates and ground truth for roll, pitch and yaw - MH-02 DATASET

Filter Name RMSE for roll RMSE for pitch RMSE for yaw

UKF 142.51 21.70 137.07
ESKF 140.04 25.11 97.78
CF 146.53 28.79 109.26
Ensemble Filter (Simple Average) 128.14 13.75 98.17
Ensemble Filter (Perceptron - MSE Loss) 114.75 18.34 95.43
Ensemble Filter (Dense - MSE Loss) 113.59 11.22 130.89
Ensemble Filter (Dense - Custom Loss) 136.02 11.23 83.46

Table I: Summary of results - MH-02

RMSE between filter estimates and ground truth for roll, pitch and yaw - MH-04 DATASET

Filter Name RMSE for roll RMSE for pitch RMSE for yaw

UKF 144.98 42.37 87.84
ESKF 115.31 23.46 49.68
CF 157.72 17.68 43.34
Ensemble Filter (Simple Average) 108.25 23.67 42.27
Ensemble Filter (Perceptron - MSE Loss) 86.78 16.01 35.42
Ensemble Filter (Dense - MSE Loss) 64.88 10.18 20.75
Ensemble Filter (Dense - Custom Loss) 98.81 11.70 41.93

Table II: Summary of results - MH-04

angles) would yeild optimal results.

VI. MINI MINECRAFT
FALL 2022

A custom mini minecraft implementation from scratch using
OpenGL, GLSL, C++, and Qt coming soon! This project will
include player physics, procedural terrain generation, chunking
and optimized world rendering, NPCs, camera transforma-
tions, path planning, and more! This was the most in depth
project I have ever tackled, and everything you see in the video
below was created entirely from scratch. Huge shoutout to my
amazing teammates Evan Grant and Benedict Florence!

There are many implementation and role breakdown details
in the GitHub README.md file found in the link below.

A. Video Link

VIDEO LINK

B. GitHub Link

GITHUB LINK

VII. ENERGY CONSCIOUS MPC IN FLUID FLOWS
FALL 2022

A. Abstract

This project aims to develop methodology for controlling
an energy conscious shape-shifting marine robot utilizing an
MPC controller to capitalize on fluid flow dynamics to follow
a desired trajectory. A linear MPC controller was developed
around a fluid particle dynamics equation formulated by
Maxey-Riley [18] by linearizing the dynamics and creating an
optimization program, and controller performance was evalu-
ated in a simulated vortex flow field. With control comprising
robot density and radius, the robot was able to successfully
reach a desired trajectory at a fixed radius from the vortex
center, however the speed of convergence and stability of the
controller were underwhelming. Tuning the MPC controller

was difficult because a linear controller was built on top of
nonlinear dynamics, and constructing a nonlinear solution is
expected to yield better results in the future.

B. Introduction

A traditional way to design marine robots is to use hy-
drodynamics to create torpedo-shaped, high propulsion ves-
sels (Poner cita). The most considerable trade-off of this
kind of robot is its high energy consumption. There is an
excellent research opportunity in the development of new
energy-conscious vessels. The most standard way to design
any marine robot is to use a Newtonian or Hamiltonian
approach; these methods are presented by Thomasson, who
gives an excellent summary and insight on using Classical
Mechanics to calculate position, velocity, and acceleration
[19]. The authors recapitulate three basic main motion models
for a vehicle in a flow field. First, the kinematic particle model,
described by eq. 9, where the vehicle dynamics are ignored,
there is the consideration of a massless particle that moves
and follows a given flow. The second model is the dynamic
particle, described by eq. 10, where the vehicle’s mass and
the forces acting on it are considered but attitude dynamics
are ingored - including the moment effects due to any present
flow field. The third and more complete model is the Dynamic
body, described by eq. 11, where mass, rotation, moments,
and forces are considered. Going further with each model
increases the difficulty of calculating dynamics for the vehicles
but describes in a more significant way the object dynamics
in a given flow. These methods typically use the Newtonian
and Lagrangian methods to compute position, velocity, and
acceleration equations.

Kinematic particle

Ẋ = vf (X, t) + vctrl (9)

https://youtu.be/2K1rY4kgB_U
https://github.com/ngurnard/mini_minecraft


Dynamic particle{
Ẋ = vf (X, t) + vr

mv̇r = fo(X, vr, vf , t) + fctrl
(10)

Dynamic body
Ẋ = R(vf (X, t) + vr

Ṙ = Rω̂

Mv̇r = fo(X,R, vr, vf (X,T ), ω) + fctrl

Mω̇ = mo(X,R, vr, vf (X,T ), ω) +mctrl

(11)

Using any of these approaches will give a suitable approxi-
mation of reality. There are two main trade-offs to using these
kinds of models. The first one is the complexity of solving this
kind of system, and the second is the difficulty of including
effectively time-dependent flow fields. If the flow field effects
were considered, they need to be computed and analyzed as
external forces and moments. Another exciting and robust
approach is to use fluid mechanics to analyze the behavior of
particles on given flows. One of the most accepted approaches
is the Maxey-Riley (MR) model, which describes the motion
of a small rigid sphere in a nonuniform flow. This technique
presents an excellent advantage by considering the external
influences over a particle [18]. This model is presented in eq.
12.

mp
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= (mp −mf )gi +mf
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(12)

In this equation, a is the sphere’s radius, mp is the sphere’s
mass, and mf is the mass of the fluid. The fluid and particle
have the same volume as the sphere. Y (t) is the instantaneous
position of the particle, Vi(t) is the instantaneous velocity
of the particle ui(x, t) is the undisturbed flow field ui(x, t)
depends on the position x and time, µ and ν are the dynamic
and kinematic viscosity, respectively. It is important to include
the recommendation from Riley. Because, in the primary form,
the MR equation has two different time derivatives, the first
one is a derivative that follows the moving sphere, eq. 13 and
the second one is a derivative that follows the moving fluid,
eq. 15.
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)
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Riley recommends, the first term has to be substituted by:

mf
Dui

Dt

∣∣∣∣
Y (t)

(15)

The first term of MR equation is the gravity force Fg and
represents the buoyancy of the particle relative to the fluid.

Fg = (mp −mf )gi (16)

The second term is the fluid acceleration force Ffa; This is
the force given by the acceleration in the center of the particle.
It accounts for the pressure gradient of the undisturbed flow.

Ffa = mf
Dui

Dt

∣∣∣∣
Y (t)

(17)

The third term is the added mass force Fam; this is the
inertia added to the system. It is a result of the movement of
the particle and the fact that this particle has to haul the same
amount of fluid to occupy a space.

Fam = −1

2
mf

d

dt

{
Vi(t)− ui [Y (t), t]− 1

10
a2∇2 ui|Y (t)

}
The fourth element is the Stokes drag force Fsd; this is the

drag force and occurs on small spherical particles with a small
Reynolds number in a viscous fluid.

Fsd = −6πaµ

{
Vi(t)− ui [Y (t), t]− 1

6
a2∇2 ui|Y (t)

}
(18)

The last element is the Basset history term Fbh; this is
a memory effect and describes the cumulative effect of the
diffusion of the vorticity from the particle along its entire path.

−6πa2µ

∫ t

0

dτ

d/dτ
{
Viτ − ui [Y (τ), τ ]− 1/6a2∇2 ui|Y (τ)

}
[πυ (t− τ)]

2

 (19)

A required piece of information is the inclusion/exclusion
of the Faxen correction, which is included in each term and
is related directly to the laplacian operator ∇2 ui|Y (t).

Given its difficulty, studies are done on when to use the
terms presented in the Maxey-Riley equations. Some of them
are [20], [21], [22]. The use and exactitude of the Maxey-
Riley equations have also been shown [23]. For the case of
this paper, we follow the assumptions from [21] that: first, the
gravity term is ignored because we are going to analyze a 2D
system where gravity is not present second, the Basset history
term can be omitted when the viscosity is small, third, the
Faxen correction is essential only in regions with significant
vorticity, and for now Basset history and Faxen correction will
be neglected. Some recent studies showed that Basset history
and Faxen correction could contribute more significantly than
believed before [24], [22].

After getting these assumptions, the Maxey-Riley equation
can be presented as 20; this representation is advantageous
to understanding the behavior of a particle depending on the



fluid properties (mass and viscosity) and the particle properties
(mass and radius).

mp
dVi

dt
= mf
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Dt
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Y (t)

− 1

2
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d

dt
{Vi(t)− ui [Y (t), t]}

−6πaµ {Vi(t)− ui [Y (t), t]}
(20)

This is the mass formulation of the Maxey-Riley equation
given in dimensional form. This equation can be used directly;
for a more neutral approach, the dimensionless formulation of
the Maxey-Riley equation is necessary. This paper uses the
density formulation to build the dimensionless representation.
The first step to get this representation is to divide the equation
by 4/3πa3, which is the volume of a sphere of radius a, then
reorganize the equation to get all the terms of the particle
acceleration on one side, giving the following representation.
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Then dividing the equation by ρf and minimizing similar
terms, we get the next representation.(
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Here it is clear that the 2ρf

2ρp+ρf
is a dimensionless constant

that is going to be represented as R, and 9ν
2a2 is very close

to the Stokes number that is St = 2a2Uo

9νRLo
where Lo is the

characteristic length and Uo is the characteristic flow. The
following equation is found when representing the complete
Maxey-Riley equation in its dimensionless form.
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This is the dimensionless Maxey-Riley equation. Here it is
evident that 2

3R is a critical factor when the particle has the
same density as the fluid R = 2

3 , when R < 2
3 particles are

heavier than fluid (Aerosol), and R > 2
3 the particle is lighter

than the fluid (Bubbles). Another important fact is that the
second term depends linearly on the Stokes number. Here it is
necessary to notice that when St ≈ 0, the particle v̇ tends to
follow the flow direction. In this paper we use this equation to
model a shape-shifting robot where the radius and the density
are controlled to navigate a given flow field.

C. Methodology

We use the eq. (23) as the Flowbot’s dynamics and this
equation was linearized in order to implement a MPC con-
troller. First, (24) is the same equation, with a nomenclature
that is closest to the one we use in class, different from the
traditional fluids convention.
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(24)

Where the subscript p denotes the robot/particle and the
subscript f denotes the fluid in which the robot is in. u1,
u2 are the robot density and robot radius respectively. ν is
again the kinematic viscosity of the water, ρ is density, and
v is velocity. The state of the robot was assumed to be x =[
x y ẋ ẏ

]
T . These dynamics were linearized around the

desired state and control to achieve the form ẋe = Axe+Bue.
Where xe = x− xd defines error coordinates.

A =
∂f

∂x
|xd,ud

=


0 0 1 0
0 0 0 1

0 0 −(
9νρf

u2
2d(2u1d+ρf )

) 0

0 0 0 −(
9νρf

u2
2d(2u1d+ρf )

)



B =
∂f

∂u
|xd,ud

=


0 0
0 0
Ix IIx
Iy IIy



I =
∂ẍ
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There are several basic fluid flows which are commonly
simulated, including vortex, vortex with sink, gyre, and double
gyre cases. For simplicity in this work, complete knowledge
of the structure is assumed and a circular vortex is used to
evaluate controller performance. The desired state xd may be
defined as any arbitrary trajectory in the 2D fluid field, and for
now the positional components of xd are computed to follow
a constant radius about the vortex center, with the velocity
components aligning with the fluid flow.

Linearizing about a desired trajectory using error coordi-
nates requires providing desired input ud. Because a more
passive robot is desirable in this application, ud is set to the
control input at the previous time step.

Once the linearization was complete, the MPC was set
up such that there was a time horizon of N = 5 steps
and dt = 0.1 seconds. The horizon is short because of the
high non-lineairty of the dynamics.The LQR cost formulation
for the finite horizon was cost = 1

2x
T
e Qxe + 1

2u
T
e Rue The

optimization problem is given by

min
x,u

quadratic cost,

s.t. initial state constraint,
input saturation constraint,

dynamics constraint.

(25)



D. Results

Figures (24), (25), (26), (27) depict the 2D trajectory of the
robot in the fluid flow field, a 1D representation of the radius
of the robot in the fluid flow, and plots of the control inputs
over time.

As shown in Figures (24) and (25), the linear MPC con-
troller was able to achieve decent tracking of the desired radius
when moving outward and moving inward in the vortex fluid
flow. In both cases, it takes the robot a long time to converge
(≈ 250 sec) to the desired radius because of the lack of
powerful actuators. The blue lines represent a moving average
of the radius to clearly show that the robot was converging
towards the intended vortex radius. The red lines represent
the robot’s radius without a moving average filter, which can
be seen having some oscillation.

(a) Particle moving inward (b) Particle moving outward

Figure 24: 2D representation of particle vortex radius.

(a) Particle moving inward

(b) Particle moving outward

Figure 25: 1D representation of particle vortex radius.

Figures (26) and (27) show the control inputs over time.
It can be seen that the robot preferred one mode of control

(radius) over the other (density) by first decreasing density
completely until the controller learned to used a nearly bang-
bang radius controller.

(a) Particle moving inward

(b) Particle moving outward

Figure 26: Density control of the robot over time

(a) Particle moving inward

(b) Particle moving outward

Figure 27: Radius control of the robot over time

In both inward and outward control, the robot was incredibly
slow as expected.



E. Discussion

We suspect that linearizing the highly nonlinear dynamics
of this system inhibited the effectiveness of the controller and
resulted in a system which is inherently not control-affine. This
approximation could explain why only a very short MPC time
horizon provided reasonable control output. For example, as
evident in Figure (26), the controller frequently drove particle
density to the minimum. With a shorter time horizon, the
controller began employing density control but often in a
destabilizing manner.

One improvement to methodology considered for future
work is nonlinear MPC using the full dynamics and more
robust solver (i.e. SNOPT). Additionally, this could avoid
having to set a relatively arbitrary ud which is nontrivial to
generate if the previous timestep control is not used.

Another option could be an augmented state space - adding
u to the state vector and instead making the control input u̇
such that the linearized dynamics become control-affine. This
would also be conducive for easily imposing an energy-saving
penalty on a change in control input over time.

The oscillation in Figure (25) which arises as the particle
approaches the desired trajectory comes from eccentric flow
around the vortex center which is biased toward the initial
position of the particle. During tuning, this behavior worsened
when applying large positional cost in Q, thereby demanding
higher control effort, and when using a longer time horizon.
Other approaches like those mentioned above might allow us
to extend our time horizon with more accurate prediction,
and we expect that this oscillation would diminish as the cost
incorporates the lower frequency error of the oscillation.

F. Conclusion

A linear MPC controller to control a shape-shifting robot
in a highly nonlinear flow field was only marginally success-
ful after extensive tuning. Although the robot did converge
towards the desired goal, it is recognized that the approach
taken is likely not optimal because of the difficulties that came
with linearizing the dynamics (dynamics were not control
affine). There are many assumptions that had to be made that
built up over time, making the process for getting a working
controller difficult. Picking ud for an energy efficient trajectory
made sense in this application. However, it is still ultimately
arbitrary because choosing ud = udt−1

was a conscious design
choice that was not proven effective with mathematical rigor
(which is very difficult to do). Additionally, choosing the
time horizon, step size, initial state, and the Q/R matrices
had significant impact on the controller’s performance and
were highly sensitive parameters to tune. Because of the many
challenges with a linear MPC controller, it is concluded that
moving towards a nonlinear MPC controller is a better strategy
in the future to eliminate the simplifying assumptions that
deviate the from the true dynamics of the system.

VIII. MUSIC GENERATION USING DEEP LEARNING -
VARIATIONAL AUTOENCODERS

FALL 2022

A. Abstract

This project developed an architecture for music generation
conditioned on music consisting of Variational Autoencoders,
a Convolutional Neural Network, and a Multi-Layer Per-
ceptron Network. Using song data from the Lakh Pianoroll
Dataset [25] and the Million Songs Dataset [26], sequences
across 5 instrument channels, namely piano, guitar, strings,
bass, and drums, were generated from the output of the
decoders of the VAEs. This work aimed to improve upong and
verify the legitimacy of [27], which included many flaws. It
was concluded that their work was illegitimate, however with
an improved architecture conditioned on genre we were able
to produce promising music sequences.

B. Introduction

Deep learning has transformed the fields of artificial gener-
ation in Computer Vision with deep fakes, NLP with article
generation, and robotics with trajectory generation. But what
about artistically generating audio signals using deep learning?
Music generation would involve learning the music sequence
and generating further the sequence of the fed music data.
This problem is interesting because it allows us to explore
the intersection of Deep Learning and the art of music, which
is an integral part of our daily lives. Music can be reduced
to a mathematical sequence of events which can thus be
represented by nodes. What makes music generation difficult
is the temporal nature of sounds to form a subjectively “good”
melody and seamlessly blend different channels of tones (i.e.,
different instruments, genres, voices, etc.). Typically, state-of-
the-art music generation architectures include RNNs, VAEs,
GANs, and Transformers. In this project, we aim to improve
the existing architectures of VAEs for music generation and to
focus on the conditional generation of music based on genre.

C. Background

Our aim in this project is to leverage the power of novel
neural network architectures that will help facilitate the gener-
ation of new music. We will be using the popular Lakh Piano
Dataset [25] in addition to the Million Song Dataset [26]. Mu-
sic provides different challenges in the pipeline of processing
since it consists of different instruments that are dependent on
each other, along with the added dependency of time. There is
more structure to music than just this; a few of them are chords
and melodies, which would result in each time step having
many outputs. But audio data also assumes many properties
that help model this problem in a similar manner to other areas
of study. The sequential aspect can be modeled using an RNN,
whereas the multiple channels of audio tracks can mimic the
channels of an image - which can be modeled using CNNs.
Much of recent work also uses deep generative models, which
are upcoming and seem to do a good job of creating synthetic
music that appears to be real.



We primarily use a VAE in combination with a few lin-
ear layers and activation functions like ReLU with dropout.
The benefits of using VAE are manifold; it is essentially
a regularized autoencoder that provides a latent space with
beneficial properties in a probabilistic manner, and this enables
a generative process.

D. Related Work

Our main architecture is an extension of the work done by
Isaac Tham [27] on Generating Music Using Deep Learning.
Their baseline method involved different approaches; from
next-note prediction with RNNs, multi-instrument RNN, and
later moving to CNNs which modeled 5 different CNNs (one
for each input) that helped the generation of new music in
an iterative process when given a starting multi-instrument
sequence. These methods, however, displayed only very little
variation in the generated music, where most generations
seemed identical to each other. When they introduced the
variation autoencoder method, they were able to map inputs
into latent distributions, and this helped introduce variation to
the generated music. While the work done previously in the
larger context of literature models ranging from LSTMs to
diffusion models, have been tried and tested. The problem we
are trying to analyze and attempt to solve is conditional music
generation, where the model conditions the output of the music
to be generated on the genre of the track in consideration.

E. Approach

Music can be divided up into multiple channels, and the
channels that were distinct and useful for this project include
piano (which constitutes the melody), guitar, bass, strings,
and drums. Using the Lakh Pianoroll Dataset [25] and the
Million Songs Dataset [26], genres were matched to track
identifiers such that each song had a corresponding genre for
training. Features such as type and number instruments used
and song length were used in the training process. The aim
was to improve upon the work of [27] which had many flaws
in their approach. For example, the test data in which they
had generated music from was part of the training set, and
thus it was likely that their generated music was not genuine.
Additionally, it was assumed in the VAEs that the variance of
the latent faactor was assumed to be a uniform single number
for each instrument, which is a bold assumption. The VAEs
were reformulated by maximizing the objective in (26).

ELBO(u, v;xi) = E
z∼qu(z|xi)

[log(pv(x
i|z)]−KL(qu(z|xi)||p(z))

u∗, v∗ = argmax
u,v∈Rp

n∑
i=1

ELBO(u, v;xi) (26)

The encoder parameters are represented with the variable
u and the decoder parameters with variable v. The encoder
outputs latent factor z ∈ Rk where k ∈ {16, 32, 64, 128},
where half of each space are neurons for the means and
the other half are neurons for the standard deviation for an

Figure 28: Conditional Music Generation Architecture

assumed Gaussian distribution. Using these latent factors z,
a deep network that takes as input the latent factors zt is
used to predict the latent factors at the next timestep zt+1.
The network was chosen as Convolution Neural Network
(CNN) for the piano channel, which was conditioned on a user
specified genre. Because this neural network existed inside of
the latent space, the Conditional CNN (CCNN) acted as if the
VAE itself was conditioned, as expressed in (27).

ELBO(u, v;xi, c) = E
z∼qu(z|xi,c)

[log(pv(x
i|z, c)]

−KL(qu(z|xi, c)||p(z|c))
(27)

This architecture of a CCNN inside of a VAE was con-
structed only for the piano channel since it was being used as
the melody to the songs since every song in the Lakh Pianoroll
Dataset [25] utilized piano, where the other channels were not
always present. Similar to the piano channel, 4 VAEs were
constructed for the bass, strings, guitar, and drums channels
that were conditioned on genre and the zt+1

piano to again
maximize the conditioned objective in (26, 27). However,
instead of a CCNN inside of the latent space, a Multi-Layer
Perceptron (MLP) neural network was used to predict the
latent factors zt+1 given inputs zt for its respective instrument.
For all channels, there was some slight noise injected into the
latent factors zt to encourage novel latent factors zt+1 such
that unique music was generated. Finally, the decoder took the
ltent factors zt+1 and appended to a music sequence.

In total, there are 5 VAEs, 1 CCNN, and 4 MLPs that
required training. Out of the 15 possible genres that are
part of the Million Songs Dataset [26], there were 4 genres
that felt distinct enough to be clearly distinguishable: rock,
pop, electronic, and RnB. A subset of songs that were of
these 4 genres were used for training. Figure (28) clearly
illustrates how all of the networks fit together to generate
music sequences.

In order to ensure the gradient is computable for the
expectation term in (27), the reparameterization trick was used
in (28). To keep notation clean, log(pv(xi|z, c)) was written



as ϕ(z).

∇u E
z∼qu(z|xi,c)

[ϕ(z)], where ϵj ∼ N(0, I)

= ∇u E
ϵ∼N(0,I)

[ϕ(µ(xi;u, c) + σ(xi;u, c)⊙ ϵ)]

=

N∑
j=1

∇uϕ(µ(x
i;u, c) + σ(xi;u, c)⊙ ϵ)

(28)

The equation in (27) is now deterministic and thus back-
propogation can be computed. The conditioning was accom-
plished by one-hot encoding the genres rock, pop, electronic,
and RnB such that they were deterministic. Some songs
exemplified more than 1 genre, and those songs were encoded
with a multi-hot encoding, which was used to generate blended
genres during generation.

F. Experimentation

1) Data Preprocessing: For our experiments, we use
the LPD5-cleansed dataset curated by the Music and AI
Lab at the Research Center for IT Innovation, Academia
Sinica [25]. This dataset consists of 5 track pianorolls (piano,
drums, guitar, bass, and strings) for 21k songs. For the
genre information, we used the Million Songs Dataset [26].
We matched the track ids for both datasets and found 11k
common tracks with genre information available. We chose
to use the top 4 genres with the highest count in the dataset,
which were rock, pop, electronic and RnB for our project.
Many songs had more than one label associated with them.
We chose to represent such songs with a two-hot encoding.
The others were represented using a one-hot encoding. We
then split the tracks into its 5 instrument components and
stacked each component for 100 randomly sampled songs.
The tracks were then broken down into 32 length sequences,
and each sequence was used as a single data point for each
component.

2) VAE Training: We trained 5 VAEs, one for each
instrument, using the processed dataset mentioned above.
The genre tags were not used for training. The ELBO was
computed for the 32 length sequences treated as a single
unit. We experimented with different dimension sizes for the
latent space(8,16,32,64). The rest of the experiments were
conducted using 64 as the dimension of the latent space.
In their experiments, [27] used assumed that the variance
of all the independent gaussians is equal. We chose to use
the more general case and set an output size of 128(2*64)
for the encoder. A batch size of 128 gave the most stable
convergence for the ELBO. We trained the VAEs for 50
epochs. The ELBO plots for a few instruments are shown in
the figures below.

(a) ELBO Piano

(b) ELBO Guitar

Figure 29: ELBO plots

3) Neural Network Training: As described previously, we
use a total of neural networks(one for each instrument). The
piano and other instrument neural networks are trained in
a slightly different manner. We first train the piano NN to
take the sampled output from the piano VAE encoder for the
current set of 32 notes as wekk as the genre encoding as
input, and predict the sampled output from the piano VAE for
the next set of 32 notes. In this way, we are teaching the piano
NN to learn to generate future notes, but in the latent space.
We trained the piano NN for 50 epochs using the Adam
optimizer as well as SGD with Nesterov’s momentem with
a learning rate of 0.001 and momentum coefficient of 0.9.
Adam resulted in a very high overfitting model as compared
to SGD, and trying out a few regularization techniques like
increasing dropout or adding weight decay did not help a
lot. We chose to train both models for music generation. The
overfit model with Adam would hopefully generate music
similar to the existing ones, with variations coming from the
VAE instead. The plots for the train and validation loss for
both is shown in figure 3.

The NNs for other instruments took the genre encoding,
VAE encoder sampled output for the current set of notes for
that instrument, as well as the VAE encoder sampled output
for the piano notes as input. In this way, they treated the
piano melody as the base to generate their music. Similar to
the piano NN, they were trained using SGD with Nesterov
and Adam optimization for 30 epochs. The plots for the SGD
train and validation loss are shown in figure 4.



4) Generating Music: In order to generate music using
the the trained models, we first created a dataset of the
first sequence (32 length) of all the tracks from the training
data. We then sample 1 datapoint from it at random, on
which the music is then generated. We also need a genre
label(one-hot or multi-hot depending on whether we want
to generate a song as a mixture of genres) which is chosen
manually. This starting sequence is then broken down into
its instrument components and passed through the instrument
VAEs respectively. We then sample a random point from the
latent distribution using the reparametrization trick and pass
the sample along with the genre encoding to the piano NN.
The other instrument NNs take the genre encoding, their
own latent sample and the output of the piano NN as input.
The outputs of all 5 NNs are then passed to the respective
instrument VAEs. The outputs of all 5 VAEs are then stacked
together to form the pianoroll, which is then converted to a
midi file using the prettymidi and fluidsynth libraries. As we
generate music in this manner, starting from a sampled song,
the first few seconds of the generated track are the original
song itself, after which the music generated by our model
begins.

(a) SGD optimizer

(b) Adam optimizer

Figure 30: Piano CCNN

(a) Guitar Loss

(b) Bass Loss

(c) Drums Loss

(d) Strings Loss

Figure 31: SGD Losses for instrument NNs

G. Discussion

Table (??) has some links to results (click “‘Link“‘ to listen)
so that the reader can listen to the produced results.



Genre Optimizer Link
Electronic-Pop SGD Link
Electronic-Pop Adam Link
Rock-Pop SGD Link
Rock-Pop Adam Link
Rock SGD Link
Electronic SGD Link
Pop SGD Link
Pop Adam Link
RnB SGD Link

Table III: Generated music with genre conditioning and genre
blending.

The quality of generation was very sensitive to initialization
because the optimization routine was likely not perfectly
tuned, and thus most generated songs were not dense with
notes. Since there were many networks that required training,
it required that all were training well in order to get a subjec-
tively quality song, which is a non-trivial task. About 25−50%
of generated songs were subjectively a good listen, while
the rest were either too slow (notes only every few seconds)
or sparse. Additionally, generating subjectively good music
where the genres were blended together was more difficult
because there were much less samples in the training data.
The choice of optimizer subjectively made similar sounding
music, however the figures illustrated in (VIII-F) indicate that
SGD is better on the test data, and thus SGD was the preferred
optimizer.

We still chose to experiment on music generation with
the overfit model with the Adam optimizer, and saw that it
generates dense notes only for a a single or 2 instruments
depending on the genre. For example, the song generated using
electronic-pop as the genre and Adam optimizer consists of
only a drum track, but is quite an accurate representation of
the drums in electronic-pop songs. Another example of this
can be seen in the song generated using pop as the label and
Adam as the optimizer, where it consists of just a piano track
that sounds accurate.

There was a very high class imbalance in the genre labels of
the tracks. Multi-genre songs sounded better than single genre
songs as the dataset had many songs with more than 1 genre
assigned to it. RnB had the fewest training examples, and that
can be seen reflected in the quality of the generated music.

There are many possible culprits as to why the generated
music was not as rich in note density for all instruments as seen
in [27], most notably being that their test set was seen within
the training set so they effectively had knowledge of the next
notes. It is also possible that conditioning the VAE’s instead
of the internal CCNN and MLP within the latent space could
generate better conditioned latent factors, and thus provide
a better next-note generation across all instruments. Recent
works such as ([28], [29], [30]), although having different ar-
chitectures all together, often incorporate more features such as
note density, loudness, energy, tempo, acousticness, liveness,
valence, emotion, etc. which have demonstrated better success
in generation. In the future, trying different architectures such
as transformers, different ways to condition (such as condition-

ing the encoder/decoder of the VAE mentioned previously),
and incorporating more features would like to be explored
to generate the best possible results. Additionally, there is
not much work in literature that incorporates vocal tone as
a channel along with instruments, which can dramatically
change the sound of a song. Using that as a feature may be
able to yield a more rich sound overall.

IX. MAYA LITE
FALL 2022

A custom maya lite clone implementation from scratch
using OpenGL, GLSL, C++, and QtThis project includes
subdivision techniques (Catmull-Clark) and skinning. Visuals
coming soon!

A. Video Link

Coming soon!

B. GitHub Link

GITHUB LINK

X. GLSL SHADERS
FALL 2022

Surface and postprocessing shaders created using OpenGL,
GLSL, C++, and Qt on a model of Mario (Wahoo)!

A. Video Link

VIDEO LINK

B. GitHub Link

GITHUB LINK

XI. REINFORCEMENT LEARNING FOR QUADROTORS: CIS
519 FINAL PROJECT SPRING 2022

A. Full Report

The report can be found fully written here (not rewritten
here to preserve formatting): REPORT LINK

B. GitHub Link

GITHUB LINK

XII. 3D SCENE FLOW
FALL 2021

A. Abstract

This project focuses on the applications of feature corre-
spondence, homography estimation, human pose detection and
mesh transformations. Given a video of an individual moving,
a rigid 3D mesh is to be warped to the surface of a specified
body part which moves with the body throughout the video.
This movement takes into account the 2D movement across
the image plane as well as the rotation about any axis that
occurs in the video. For example, if the desired goal is to give
a human Iron Man’s helmet, then the head must be tracked
in order to warp the helmet onto the head with the correct
pose. The 3D pose of the object must be maintained within
the 2D video, hence 3D scene flow. Traditional methods tend
to struggle with accommodating changes to the 3D orientation

https://drive.google.com/file/d/1Q_yvOw5A8Mu7DLV8RB6Mmt9Zdkgu_ZX7/view?usp=sharing
https://drive.google.com/file/d/1W9Z77UgSOh3mHfAA44ZHfF7SO9QvAQzK/view?usp=share_link
https://drive.google.com/file/d/1la13tsV5fKlLneyKg6LUBUCQm2rcslcf/view?usp=sharing
https://drive.google.com/file/d/1osxYoqQyPSG9CeHDAJ39CwYuMHWr3jF8/view?usp=share_link
https://drive.google.com/file/d/1eyVZFW34LkcMUPb_3C8frJl9rk98oyAw/view?usp=sharing
https://drive.google.com/file/d/1-YiaH8Xmz11IJH28C9tIe9yeBwbJ2-LX/view?usp=share_link
https://drive.google.com/file/d/1WSPZRRb0rofca3nAUpjfml4xmuoLD7K9/view?usp=share_link
https://drive.google.com/file/d/1tnFZ1mSF7UO5qbbL250-s4Rx0GblkLcU/view?usp=sharing
https://drive.google.com/file/d/11aZo0pTFoUA342_KbPyaPLDxAD4pDfQb/view?usp=share_link
https://github.com/ngurnard/maya_lite
https://youtu.be/nb-L5Fy6ZkE
https://github.com/ngurnard/glsl_shaders
https://drive.google.com/file/d/14TEjrhSz2cNcr6h7xkuuIFm0IzWJ76Bh/view?usp=sharing
https://github.com/ngurnard/CIS519-Final-Project


of the subject, something we plan to explore in this work.
Collaborators: Aadit Patel, Rithwik Udayagiri, Ankit Billa,
Evan Grant, Daniel Stekol

B. Goal & Objective

This project is split into 2 main goals/objectives -
1) Successfully track the 3D movement of the subject in

image plane. This will involve human pose detection
and feature point extraction from the subject, both of
which are being taken care of using Google’s MediaPipe
framework [31].

2) Stick the external 3D object mesh onto a specified
area of interest on the subject. We will compute the
transformation matrix of the subjects 3D movements
between 2 consecutive frames and using it to perform a
rigid body transformation on the external object.

C. Related Work

• Human Pose Estimation: The authors of [32] released
and demonstrated a novel method for real-time 2D multi-
person pose estimation - and open-source library called
OpenPose. This method takes a 2D RGB image input
and outputs the 2D locations of anatomical keypoints
of human figures in the image. This is done using a
multi-stage CNN to first predict a set of confidence maps
for body part locations, then generate part affinity fields
which indicate the degree of association between body
parts which comprise a single pose.

• Rigid 3D Scene Flow: The method presented by [33]
involves a deep architecture capable of reasoning at
an object level to describe a dynamic 3D environment
using generalized optical flow. This strategy separates
background (static) elements from dynamic foreground
rigid body agents, and relaxes the supervision require-
ments for dense scene flow as a result of the object-level
abstraction.

• MediaPipe: 3D human pose estimation with feature
tracking for face and hands has been implemented in [31].

• Optical Expansion: The authors of [34] present a tech-
nique for using dense optical expansion - a cue of depth
given by expansion of an image feature in the 2D image
frame - for upgrading 2D optical flow to 3D scene flow.

• 3D SIFT Descriptor: The authors of paper [35] propose
a 3D SIFT Descriptor that can be used for action detection

• Fourier Features to learn High Frequency functions:
[36] talks about using a Multi Layer Perceptron to learn
high frequency parts after passing features through fourier
functions.

D. Proposed Method

Our proposed approach can be divided into 5 sub-tasks:
Human Pose Detection for Feature point extraction, load and
render .OBJ file (3D object), scale and align .OBJ file to match
first frame, calculate rotation and translation between frames,
transform 3D object, and render each frame with 3D object
superimposed.

E. Experimentation and Evaluation
1) OpenPose: The OpenPose library [32] was the initial

candidate for the first step of the project: human pose de-
tection. The openpose library used a pretrained deep learning
model that could return a skeleton of a human in a video.
However, OpenPose came with some huge disadvantages. The
installation process was extremely difficult because of depen-
dency issues that were not well documented, the computation
time was very slow, and the output was a stick figure where
the bones would be instead of a point cloud. After about a
week of unsuccessful use of OpenPose, the team switched to
the MediaPipe framework by Google which addressed all of
these concerns.

2) MediaPipe: Similar to OpenPose, MediaPipe [31] is a
deep learning network that returns human pose, but it also
returns the pose in the form of a 3 dimensional point cloud in
real time. The model is lightweight enough to be run on mobile
devices. MediaPipe eliminated the need to custom generate a
3D mesh for the subject. The network has models that generate
3D point clouds for the face, hands, body, hair segmentation,
iris tracking, and more in case the project is expanded. Using
MediaPipe and OpenCV, a 3D point cloud for the face was
generated for every frame of a video.

3) Pose Model: The initial model to generate the 3D point
cloud for the face was the MediaPipe Pose Estimation model
[31]. The output of this model gives an estimation of 33
landmarks across the entire body, 11 of which being on the
face. The origin on the model is centered at the hips of
the person in the video. Thus, when the human was at an
orientation where their body was sideways relative to the
camera frame (side profile), the model attempted to estimate
depth of the occluded body parts such as the hidden arm,
leg, hip, etc. In addition, if the human in the video was
close enough to the camera to the point where most of their
body was out of frame, then the model struggled to estimate
where the hip origin was. Because of this, a lot of the face
landmarks were poorly estimated in depth, and often in X and
Y coordinates as well as shown below.

Because of the poor estimations, the homography compu-
tations for rotation and translation were poor.

4) FaceMesh Model: The FaceMesh model in MediaPipe
[31] was a much better estimator for 3D facial landmarks. The
FaceMesh model generated a total of 468 different landmarks,
therefore reducing the impact of an outlier landmark when
computing the homography parameters.

When parts of the face are occluded, for example in Figure
38, the Face Mesh Model still estimated facial landmarks in
3D. The estimates proved to be much more accurate than
those of the Pose Model, and thus generated much more
meaningful homography parameters. The facial landmarks also
happened to be ordered, meaning the tip of the nose landmark
was the same position in the output array in Figure 37 as
Figure 38. This detail eliminated the need to compute feature
correspondence, thus eliminating additional noise that may
have been added to the homography parameters, and therefore
the overall system.



Figure 32: Original Orientation of Face

Figure 33: Tilted Orientation of Face

Figure 34: Pose Model Landmarks corresponding to Figure 32

Figure 35: Pose Model Landmarks corresponding to Figure 33

Figure 36: Desired MediaPipe landmarks [31]

Figure 37: FaceMesh Landmarks
corresponding to Figure 32

Figure 38: FaceMesh Landmarks
corresponding to Figure 33

F. Homography

Since the point clouds are in 3D space, "homography" may
be the abused in the sense that it is a 2D transformation.
However, since the 3D point cloud was being projected into
2D space, the term homography was used to keep referencing
this technique simple.

Given 2 3D point clouds, the homography parameters,
being the estimated rotation matrix R and translation vector t,
were estimated using the Kabsch algorithm [37] and least-
squares minimization fitting [38]. Additionally, the face of
the human was assumed to be a rigid body, thus simplifying
the computation [39]. Assuming frame i has landmarks A
and frame i+1 has landmarks B, the rotation matrix R and
tranlation vector t are computed as follows:

RA+ t = B

The first step to estimating the homography parameters
was to compute the centroid of the 3D mesh vertices of 2
sequential frames. The centroid is just a mean of all of the
points’ (N points) coordinates, calculated as follows, where A



is the matrix of points coordinates:

centroidA =
1

N
∗

N∑
k=1

Ak

Once the centroids are computed between frame 1 and frame
2, the rotation matrix R is estimated by aligning the centroids
and using least squares to get the closest estimate [38], [37].
This eliminated the need to compute translation in the same
step, simplifying the calculation. Singular value decomposition
(SVD) could then be used on the covariance matrix H to obtain
matrices U and V whose columns are the left-singular and
right-singular vectors of the singular values in the diagonal
matrix S.

H = (A− centroidA) ∗ (B − centroidB)
T

[U, S, V ] = SV D(H)

R = V ∗ UT

The translation between the 2 3D point clouds can then be
computed using:

RA+ t = B

t = B −RA

t = centroidB −R ∗ centroidA
G. Pytorch3D Open3D Rendering

The .STL or .OBJ file is warped and rendered using Py-
Torch3D [40]. PyTorch3D is a tool used to load .OBJ files and
store them as a mesh. It has multiple options for rasterizing,
shading and rendering the mesh to an image. This library
was used to transform the .OBJ file using the homography
rotation matrix calculated to track the face of the person.
Once the mask was successfully rendered, mesh vertices were
selected using Open3D. These points selected on the Open3D
mesh were then mapped to the corresponding location on the
human face. Pytorch3D was then used again to superimpose
the rendered mask onto the human face. The correct translation
and scaling were applied in order for the helmet to look
realistic when superimposed on the human.

H. Results and discussion

The final result photos and video links are given in the ap-
pendix below. We were successfully able to extract the various
points of interest from a human face, find the homography
between the consecutive frames and apply that homography
to a subject 3D mesh (in this case, an Iron Man helmet). We
were also able to align the face and the 3D mesh correctly for
every frame with appropriate scaling.

I. Future Work

The superimposed helmet was implemented in 2D, resulting
in some instances where an ear or a nose would stick out of the
helmet. A more robust superimposition can be implemented
in 3D, such that the helmet perfectly wraps around the head.
Additionally, objects such as gloves and body suit could be
also be warped onto the human model instead of only a helmet.

Figure 39: Mask render corresponding to
Figure 32 before homography

Figure 40: Mask render corresponding to Figure 33 after
applied homography parameters

Figure 41: Superimposed output showing rotation

Figure 42: Original image



J. Appendix, Files, Videos

The link to google drive can be found HERE. This drive
contains the presentation, presentation video, output videos
and final code used in this project. Some of our results are
mentioned below.
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