
Personal Portfolio - Nicholas Gurnard Mechanical
Engineering Student

Nicholas (Nick) Gurnard
Undergraduate Engineering Student at UC, Irvine – Interested in Robotics and Controls

Phone: +1 949 257 8760
Email: nk.gurnard@gmail.com || LinkedIn: Nicholas Gurnard

Purpose—The purpose of this portfolio is to give any readers
information on my professional endeavours and to get a feel
for my personality. This portfolio is no longer updated and is
designed to feature projects, accomplishments, and experiences I
had in my undergrad. This information is not to be distributed
or replicated without my consent. If there are any questions or
concerns, do not hesitate to contact me.

CONTENTS

I Introduction 1

II Robotic Arm Simulations 1

III Autonomous Lane Following Robot 4
III-A Problem 4
III-B Our Solution 4

IV Activity Prediction - Machine Learning Model 7

V Wearable Sensing Rehabilitation Device 11

VI Manufacturing Engineering Internship 13

VII Payload Delivery Drone 13

VIII Tactical Shotgun - Solidworks Project 14

References 14

I. INTRODUCTION

Hello! My name is Nicholas Gurnard, but most people call
me Nick. I am a mechanical engineering student interested in
the robotics industry. Robotics is a field with a wide range of
subcategories, and I am still discovering which one is the best
fit for me. As of now, my focus lies primarily in learning the
brains behind intelligent robots, such as planning tasks and
controls & manipulation. For my future career, I see myself
working on human interactive robots, autonomous vehicles,
or industrial automation. Currently, I am preparing to pursue
a graduate degree in robotics to sharpen my skills before
industry. Feel free to reach out to me!

II. ROBOTIC ARM SIMULATIONS IN MATHEMATICA
JANUARY 2021 - MARCH 2021

To gain more experience programming robots, I learned
Mathematica to simulate robotic arms. Specifically, I was

interested in the forward and inverse kinematics of 6 degree-
of-freedom (DOF) and 3 DOF robots. Using forward and
inverse kinematics, I learned how robotic arms are oriented
in a 3D environment starting from either the ground/reference
frame or from the end-effector.

For my first simulation, I focused on the Adept 800 SCARA
robot. Since forward kinematics are generally easier equations
to solve, I started with using all of the SCARA robot’s joint
angles to position an end-effector in space. First, I assembled
all of the joint angles and known parameters into a Denavit-
Hartenberg table using Figure 2.

Joint i Θi di αi,i+1 ai,i+1

1 Θ1 342 0 325
2 Θ2 45 0 275
3 Θ3 d3 - -

Table I
DENAVIT-HARTENBERG TABLE FOR THE ADEPT 800 SCARA ROBOT.

Figure 1. Adept 800 SCARA robot dimensions (in mm) used to assemble
the Denavit-Hartenberg table.

tel:19492578760
mailto:nk.gurnard@gmail.com
https://www.linkedin.com/in/nicholas-gurnard/

From the Denavit-Hartenberg table, I employed the for-
ward kinematics equations which consist of screw displace-
ment matrices. Screw displacement matrices are homogeneous
transformation matrices that allow for both rotational and
translational movement to be accounted for simultaneously in
a 3D environment. A homogeneous transformation matrix has
a 3x3 rotation matrix in the upper left corner of a 4x4 matrix,
and the rest of the entries are populated with 0 except for the
bottom right entry which is populated with 1. The forward
kinematics evaluation is as follows:

K(Θ1,Θ2,Θ3, d3) =

[Z(Θ1, 342)][X(Θ0, 325)][Z(Θ2, 45)][X(Θ0, 275)][Z(Θ3, d3)]

The Z and X functions represent the Z axis screw displace-
ment and X axis screw displacement matrices, while K is the
forward kinematics function. The forward kinematics equa-
tions allow for precise calculation of where an end-effector
is in space if you know the robot’s joint angles. Forward
kinematics equations, linear algebra, and some Mathematica
programming magic (AKA graphics commands that take a
long time to master) eventually led to a successful simulation!
The robot is easily able to move between end-effector key
frames and actuate its linear actuator on the end. A video of
the animation can be found by clicking HERE.

Figure 2. Adept 800 SCARA robot simulation. Full animation found by
clicking HERE.

Many 6 DOF robots are not complete without a 3 DOF
wrist as the end-effector, so I naturally employed the same
techniques to simulate a robotic wrist. Again, a Denavit-
Hartenberg table was assembled to employ the same forward
kinematics analysis. After completion of the robotic wrist
analysis, I can then couple the SCARA robot (or similar) and
a wrist to finally simulate a 6 DOF robotic arm.

Joint i Θi di αi,i+1 ai,i+1

4 Θ4 d4 π/2 0
5 Θ5 0 -π/2 0
6 Θ6 0 - -

Table II
DENAVIT-HARTENBERG TABLE FOR A ROBOTIC WRIST. ASSUMING NO

OFFSET, MEANING THE WRIST IS STANDALONE AND NOT ON A ROBOTIC
ARM.

Since the keyframes (AKA the end-effector frames) gener-
ated by the forward kinematics equations all share the same
origin for a robotic wrist, I offset them by multiplying by the
coordinates of each keyframe by the Z screw displacement
matrix at a specified radius. This allowed the keyframes to be
easily visible on the surface of a sphere without mathemati-
cally impacting the result. Note that the robotic wrist uses the
same forward kinematics equations outlined before. The final
simulation can be found by clicking HERE. The animation
shows a 3R wrist (a wrist consisting of 3 revolute joints or a)
moving between the offset keyframes. The wrist is animated
as a polygon.

Figure 3. Robotic wrist simulation (3 DOF). Full animation found by clicking
HERE.

After completion of the forward kinematics of the SCARA
robot and the 3R wrist, I then learned how to calculate the
inverse kinematics for each. With inverse kinematics, the
goal is to calculate the joint angles needed to position an
end-effector at a known location. The math here is pretty
complex and lengthy, so I am just going to ask you, the
reader, to trust me that I successfully completed this! The
result is exactly the same as the figures above. Except this
time, I find the joint angles from the end-effector location
(inverse kinematics) instead of using the joint angles to find
the end-effector location (forward kinematics). If you would
like to know how I completed this task, I would be happy to
hear from you! I will walk you through the steps on how it
was accomplished and will even show my Mathematica code.

For a realistic and fun project, I used forward and inverse
kinematics used to fully simulate the real Mars Rover. The

https://www.youtube.com/watch?v=iJd9HeI6ek4
https://www.youtube.com/watch?v=iJd9HeI6ek4
https://youtu.be/XJ6R5ZdV6LI
https://www.youtube.com/watch?v=XJ6R5ZdV6LI
https://www.youtube.com/watch?v=XJ6R5ZdV6LI

fundamental principles of both forward and inverse kinematics
were largely the same as before, except now there were minor
differences that required mathematical "trickery". Extensive
simplification and equation manipulation were required in
order to solve a system of 4 equations and 4 unknowns. The
following image shows what the Mars Rover looked like:

Figure 4. Mars Rover simulation (6 DOF).

The following Denavit-Hartenberg table was used to solve
the forward and inverse kinematics (also show the dimensions
of the robot):

Joint i Θi di αi,i+1 ai,i+1

1 Θ1 12.8 π/2 0
2 Θ2 0 0 65.5
3 Θ3 0 0 65.5
4 Θ4 0 - -

Table III
DENAVIT-HARTENBERG TABLE FOR THE MARS ROVER

Once the forward and inverse kinematics were calculated
(again, using the same principles as above), an animation was
created and it looks incredible!

Figure 5. Mars Rover simulation (6 DOF). Full animation found by clicking
HERE.

Finally, the last simulation I did was of a platform robot
(AKA a parallel robot). These robots are different from serial
robots (i.e. robotic arms) because they all must interact syn-
chronously when touching the platform. Serial robots usually
consist of several links connected via revolute or prismatic
joints with one end connected to ground (fixed frame) and
one end being free (moving frame). On the other hand, a
parallel robot has 3 fixed frames and 3 moving frames, which
are all correlated via a platform. As a result, the forward
and inverse kinematics are slightly different in their difficulty
of calculating. The inverse kinematics of a platform robot is
easier than the forward kinematics because the location of the
platform is known, and the only thing that must be calculated
is the extension of the rods interfacing with the platform. On
the other hand, the forward kinematics becomes much more
complicated because the extension/retraction of one of the
arms interfacing with the platform creates and effect on the
other two arms. In essence, they are not entirely independent.
However, the problem is still solvable! The fundamental prin-
ciples are still very similar to serial robots with some minor
differences. The inverse kinematics are solved via constraint
equations that compute the leg lengths of each of the 3 legs
using the location of the base pivots and the moving platform
pivots. The forward kinematics is more complicated to solve
and the math is too lengthy to put into this document. However,
it is well documented online by solving the Heuristic Resultant
and the constraint equations.

https://www.youtube.com/watch?v=ionTAf3T7no
https://www.youtube.com/watch?v=ionTAf3T7no

Figure 6. Platform robot simulation found by clicking HERE. Both forward
and inverse kinematics were solved for this robot.

The trajectory of each of the joints of the parallel robot was
mapped out in an effort to solve the forward kinematics. Each
of the joints of the parallel robot drew a perfect circle, which
is represented in blue in the following figure:

Figure 7. Platform robot joint trajectories found when solving forward
kinematics.

III. AUTONOMOUS LANE FOLLOWING ROBOT
JANUARY 2021 - MARCH 2021

A video presentation for this project was created and can be
found by CLICKING HERE. It packages all of the following
information into a convenient crash course!

A. Problem
Motor vehicle crashes are a leading cause of death in the

U.S. that only grows in scale as more vehicles are continually
introduced to already congested roads and distracted drivers.
Consequently, autonomous transportation is a solution that will
bring a drastically higher level of safety and consistency to
public roads. There exists a need for a small-scale driving
robot that allows for rapid testing of new control algorithms
in real-world traffic settings. This design will be responsive to
traffic signals and therefore can later be scaled to traditional
vehicle-sized operation.

B. Our Solution
Our team (Team Tater Bots), consisting of Patrick Kelley,

Luis Ramirez, and Selvin Garcia, present a low-cost, small-
scale, autonomous vehicle that allows for rapid prototyping in
real-world traffic situations. Our approach includes a device
with the capabilities of 1) sensing lines in a path to maintain
a singular lane even in curvy roads and 2) reading colored
signals in its path to incorporate additional commands such
as speed control and traffic signals. With the incorporation
of IR sensors, we are able to detect the outer limits of our
desired path and correct ourselves appropriately. Turning of
our mobile robot is achieved with the slowing of the wheels
of one side of the robot. Encoders attached to the motors allow
for feedback of the wheel speed. Using the encoder signal, we
can slow one side of the robot (2 wheels on one side) such
that we achieve a skid-steered mobile robot design. In order
to implement traffic commands to our autonomous device, we
are incorporating a color sensor in order to send signals to the
robot. By presenting different colored symbols in the path of
the robot, we are able to slow down, stop, or speed up the
overall speed of our car.

Figure 8. Final Autonomous Car build.

The robot uses a color sensor to detect colors that relay
interrupts to the microcontroller that tell the robot to speed
up, slow down, stop, etc (think traffic lights and stop signs).
IR sensors allow for the robot to sense where it is in the lane
by detecting a signal change between a dark street (asphalt)
and white painted lane lines. Using feedback from the wheel
encoders that provide wheel speed, the IR sensors, and the
color sensor, the robot uses a PID controller to steer the robot
back into the center of the lane.

The feedback from the various sensors that is fed into the
PID controller was used to achieve our desired speeds in each
independent wheel. Since DC motors do not provide feedback
like a stepper motor, a feedback loop with motor encoders is
required in order to properly ensure that we are achieving our
desired speeds. Each motor incorporates an encoder and a U-
shaped IR sensor to read the measured speed of each motor.
This reading is then compared with the desired speed and the
difference is then implemented into our PID controller as our
error. Signals collected by the microcontroller from the IR
sensor and color sensor will dictate the desired speed of each

https://youtu.be/WsLtVHMgq9U
https://youtu.be/dxFWpTsQTJI

motor in order to achieve a desired kinematic response. The
calculations associated with our feedback control loop include
the calculations for finding the actual speed of our motors and
the PID equations for each respective wheel. Calculating the
speed of the motor with the encoder sensors used:

WheelSpeed =

1 (DurBtwEncoderHoles+Gaps)∗(NumEncoderHoles)

With the PID equations taking the form:

u(k) = Kp ∗ e(k) +Ki ∗
∫ k

0

e(τ) dk +Kd ∗
d

dt
e(k)

The block diagram for the control of the vehicle is repre-
sented as follows:

Figure 9. Block diagram for the control of the vehicle.

The gains Kp, Ki, and Kd were found by feeding sets
of input and output data through MATLAB’s system iden-
tification tool, which analyzes the relationship and defines
a transfer function to characterize each motor. We used the
speed encoder to measure outputs to a step/square wave, ramp,
and triangle wave inputs to each motor and set the transfer
function parameters to 2 poles, 0 zeros. The following plots
are characterization of the front left motor (others are similar):

Figure 10. Input signals for a ramp, square, triangle wave and the corre-
sponding wheel speed output.

Figure 11. Bode plots for the wheel’s response used to characterize the gains
for the PID controller.

Finally, we fed the modeled transfer functions into MAT-
LAB’s PID tuner application and selected consistent values of
TS and TR for the 4 motors.

Figure 12. MATLAB’s PID tuner application that provided numerical values
for each of the gains for the wheels. This graph shows a step response.

PID equations for front left, front right, rear left, and rear
right wheels respectively:

u(k) = 59.86 ∗ e(k) + 526.3 ∗
∫ k

0

e(τ) dk + 1.37 ∗ d

dt
e(k)

u(k) = 29.68 ∗ e(k) + 460.4 ∗
∫ k

0

e(τ) dk + .4783 ∗ d

dt
e(k)

u(k) = 28.11 ∗ e(k) + 449.2 ∗
∫ k

0

e(τ) dk + .4398 ∗ d

dt
e(k)

u(k) = 23.4 ∗ e(k) + 364.4 ∗
∫ k

0

e(τ) dk + .3753 ∗ d

dt
e(k)

The kinematic model of our robot can be represented by
the following diagram. In this diagram, a fixed XY coordinate
system is represented by O and a moving coordinate system
fixed on the robot is represented by R.

Figure 13. Kinematic model of our robot.

Position and orientation are described as:

Oq = [OxR,
OyR,

OφOz]
T

Where vectors of with respect to the fixed frame O and moving
frame R can be written as:

Oq̇ = [OẋR,
OẏR,

Oφ̇Oz]
T

Rq̇ = [RẋR
O, RẏR

O, Rφ̇Oz
O]T

The rigid body speed of the robot in the fixed frame O is
found by multiplication of the robot Jacobian with the robot
velocity vector of the moving frame R. This must satisfy:

Oq̇ = OJRRq̇

Where the J matrix has the following form:

OJR =

cos(OφOz) −sin(OφOz) 0
sin(OφOz) cos(OφOz) 0

0 0 1

J is the robot jacobian and can be modeled as a simple rotation
matrix since the robot can be modeled as a rigid body. As the
robot turns, the Jacobian reflects the above image, where the
J is the rotation matrix [1].

The following is the electrical circuit schematic for our
robot:

Figure 14. Diagram showing how each electronic component will be
connected. A bigger image can be found by clicking HERE.

Due to the number of pins on the Teensy 4.0 (40), each
component has a pin that it can connect to. This selection
of microcontroller allows for the connection between all
IR sensors, color sensor, and motor drivers. The following
illustrates how data will be transferred between components:

Figure 15. Logic Schematic. A bigger image can be found by clicking HERE.

A finite state machine (FSM) was created in order to
program the logic of the robot operation onto the Teensy 4.0
microcontroller accurately. For cleanliness of this document,
please navigate to THIS LINK in order to view the finite state
machine. It is large and dense, and so it would be best to
view independent of this document. The white states repre-
sent lane following and the colored states are interruptions
representative of traffic sign detection. Inputs are omitted in
this version for clarity. The input and flag values are included
in this version of the FSM. Inputs are measured by sensors
and flags are generated by the microcontroller. To improve
diagram readability, the colored states from the previous slide
are combined in the ‘SC’ state, which represents all possible

https://drive.google.com/drive/u/2/folders/1V7gIfUrQKDDTeNN3aefwYZORUo5rI-uA
https://drive.google.com/drive/u/2/folders/1V7gIfUrQKDDTeNN3aefwYZORUo5rI-uA
https://drive.google.com/drive/u/2/folders/1Mur-qKkoENHUZ-2luQaxi570I79px4N9

color-detection interruptions and consequent actions taken.
The dashed box is a close-up diagram of the state ‘SC,’ which
acts as a black box in the global FSM.

This project was conducted during the peak of the COVID-
19 pandemic which caused some logistical issues in the
construction of our robot. Despite the added difficulties caused
by the pandemic during testing, component integration, and the
design process, this robot was an overall success!

IV. ACTIVITY PREDICTION
WINTER 2020 - SPRING 2020

Smart phones and smart watches are wielded by millions of
people in societies all over the world. These gadgets contain
powerful data collection hardware inside of them including
acceleration sensors, cameras, location sensors, compasses,
fingerprint sensors, and even heart rate monitoring sensors.
The collection of these various sensor readings can give
insight and research opportunities to many fields of study,
including healthcare and exercise science, and much more.
In this project, the problem of human activity prediction
is outlined and analyzed. Using only simple features
extracted from the time series data of smartphone/smartwatch
accelerometers and gyroscopes, a classification model was
made to identify what the subject was physically doing,
such as walking, typing, eating, etc. Then, the variable that
matters most when attempting to create a predictive model is
identified.

This project analyzes sensor readings from the WISDM
smartphone and smartwatch activity and biometrics dataset [2].
The WISDM dataset includes data collected from 51 different
subjects numbered 1600 to 1650, each of which performing
activities such as walking, typing, clapping, eating soup, eating
pasta, etc. Each user was instructed to perform each activity
from a list of 18 different activities, listed in Table IV, for a
total of 3 minutes. Each of the 51 subjects was equipped with
a smartphone and smartwatch, which held accelerometers and
gyroscopes inside of them that collected acceleration data in
each of the coordinate directions x, y, z. The subjects were
given a LG G watch as their smartwatch and one of three
types of smartphones: Google Nexus 5, Google Nexus 5x, or
Samsung Galaxy S5.

The WISDM dataset provides 15,630,426 raw accelerometer
and gyroscope readings for each of the x, y, and z axes.
For each reading there is an associated time stamp, activity
code, and subject identifier. Each reading was sampled at
20Hz for both the smartwatch and the smartphones. There are
effectively 4 types of readings available: phone accelerometer,
phone gyroscope, watch accelerometer, and watch gyroscope
readings (pa, pg, wa, wg).

The data provided gave no indication as to which orientation
each device was tested in. The directions x, y, and z could
have been any direction in the 3D space the device occupies.
In order to identify how the device was oriented relative to the

Walking A
Jogging B
Walking on Stairs C
Sitting D
Standing E
Typing F
Brushing Teeth G
Eating Soup H
Eating Chips I
Eating Pasta J
Drinking from Cup K
Eating Sandwich L
Kicking Ball M
Playing Catch O
Dribbling (Basketball) P
Writing Q
Clapping R
Folding Clothes S

Table IV
LIST OF ACTIVITIES AND CORRESPONDING CODE.

ground, Figure 16 was constructed to show the acceleration for
each of the three axes.

For each axis, x, y, and z, it is clear from the figure that
the orientation of each subjects’ phone and watch are not
consistent. Upright orientation occurs when the acceleration
matches that of the earth’s gravitational constant of magnitude
9.8 m/s2. This could be due to the fact that each phone has
the sensors mounted differently, or upon manufacturing the
orientation of the sensor is not consistent. Additionally, every
subject could have wielded the devices at different angles
when performing activities. Whatever the causation may be,
it is clear that orientation cannot be taken into consideration
without extensive data cleaning. Therefore, it is assumed
that the device orientation is not a variable in the prediction
of activities. If data were to be collected real time from
millions of different people, the orientation would also not be
consistent, so it is important to create a model that ignores
that fact.

After some subject analysis, it was discovered that every
subject failed to perform every activity. The subject that failed
were subjects 1607, 1609, 1616, 1642, and 1643. These users
were not included in the training of the models.

The raw data from any sensor/device combination is ex-
tremely noisy, so feature extraction is necessary to create an
accurate prediction model. Additionally, building a model to
predict the activities with only the instantaneous accelerom-
eter and gyroscope readings, or the raw data, is extremely
inaccurate. Out of the 3 minutes each subject performed the
activity, a total of 2 minutes was extracted from the activity.
Because of uncertainty as to how the data was collected, the
start and the end of each activity was removed in case the
subject had recordings made while setting up and shutting
down their devices, which then amounted to the 2 minutes
specified. Thus, 19 different types of features were extracted
from the raw data for each of the 4 effective types of readings
(pa, pg, wa, and wg respectively). For the extraction of these

Figure 16. Orientation analysis.

features, a window of a size 10 seconds is considered. A 10
second window was chosen because 10 seconds allowed for
an adequate number of cycles of the activity being analyzed.
The window progressively rolls across the 2-minute span of the
activity for each subject with an overlap of 50%. For example,
if the first window covers the first 10 seconds of the 2-minute
span, that would be rows 1-200. The following window would
be rows 100-300 and the window would keep rolling until it
reaches the end of the 2-minute span. A visual of how the
window operation works is Illustrated in Figure 17.

Figure 17. Rolling window visualization.

The types of features extracted are listed below, with the
number of features generated in braces:

• Mean {3} – The average sensor reading over the window.
One for each axis.

• Standard Deviation {3} – The standard deviation of the
sensor readings over the window. One for each axis.

• Variance {3} – The variance of the sensor readings over
the window. One for each axis.

• Time Between Peaks {3} – The time between the peaks
of the sensor readings over the window. One for each
axis.

• Average Resultant Acceleration {1} - The average resul-
tant value of the sensor readings over the window. Found
by taking square root of the sum of each instantaneous
reading for each axis squared. Then, averaging those
values over the window.

• Maximum {3} – The maximum sensor reading over the
window. One for each axis.

• Minimum {3} – The minimum sensor reading over the
window. One for each axis.

The maximum, minimum, and time between peaks features
are extremely sensitive to outliers. To correct for the outliers,
the window was smoothed using a moving average. A small
sub-window of size 10 readings, or 0.5 seconds, was used
as the smoothing parameter that operates as another rolling
window. The sub-window was intentionally designed to be
very small to ensure that the data was not being smoothed too
much. This way, important peaks are still kept with relatively

the same amplitude, and the signals between activities are still
distinct. The maximum, minimum, and time between peaks
features were then calculated from this slightly smoothed
signal.

Figure 18. Moving average visual to demonstrate close fit. Red Line:
Smoothed using moving average with sub-window of size 0.5 sec. Black
Line: original signal.

It is important to note that, in general, smoothing signals
is poor practice because it makes the various signals for each
activity too similar to one another and confuses the predictive
model. However, since the smoothing was not too extreme,
the model performed roughly 3% better on average when the
data was smoothed.

In addition to the 19 extracted features, the activity label and
the subject numeric identifier (1600-1650) were also included
as variables for the model for a total of 21 variables. Once
the features were extracted, a correlation matrix was created
to determine which variables were highly correlated, depicted
in Figure 19. Note that the highly correlated features have a
correlation coefficient close to magnitude 1.

As expected, the variance and the standard deviation
features are correlated because the standard deviation is
simply the square root of the variance. In addition, a
relatively strong correlation exists between the average
resultant acceleration and the standard deviation/variance, as
well as the minimum/maximum and the mean. In the creation
of the model, it is important to recognize what is correlated in
order to avoid confusing the model thus decreasing prediction
accuracy.

Now, the predictive model is ready to be created. The
random forest classification algorithm was the main predictive
model used to classify subject activity. A random forest is
powerful for this particular data set because there is little
need for model interpretability, only high performance. There
is no clear indication of clustering, which is the motivation
for choosing random forests over a simpler, faster, and
more interpretable model such as KNN. Random forests are
bagged decision tree models that randomly choose a specified

Figure 19. Correlation matrix between extracted features.

number of m predictors as split candidates from a full set of
p predictors. Each split can only use one of the m predictors
and a fresh set of m predictors is taken at each split. This
leads to decorrelation of the trees within the forest thus
leading to lower variance. The predictors in this case will be
the extracted features.

For each of the 4 effective reading types (pa, pg, wa, wg),
there were 3-4 random forests made. The difference between
each of the random forests is outlined as follows:

1) RF1 - Random Forest predicting all activities at once.
2) RF2 - Random Forest predicting only activities where

the corresponding smart device is of importance.
a) Phone activities: walking (A), jogging (B), walking

on stairs (C), sitting (D), standing (E)
b) Watch activities: typing (F), brushing teeth (G),

eating soup (H), eating chips (I), eating pasta (J),
drinking from a cup (K), eating sandwich (L),
kicking ball (M), playing catch (O), dribbling (P),
writing (Q), clapping (R), folding clothes (S)

3) RF3 - Random forest predicting all activities at once and
eating activities are combined as one category.

a) Eating activities: H, I, J, L
4) RF4 - Random forest predicting only activities where the

corresponding smart device is of importance and eating
activities are combined into one category.

In the creating of each random forest, the highly correlated
features identified from Figure 19 were removed as variables.
The variance was removed instead of the standard deviation
because it resulted in marginally less accuracy for each
random forest. The minimum, maximum, average resultant
acceleration, and mean features were all reincluded in the

random forests because the removal of any combination of
those features resulted in a decrease in accuracy that was
greater than 5%. Additionally, the value of m was tuned to
get the maximum possible accuracy.

The features were then split into model training data and
model validation (test) data. The first 75% of features for
each of the 4 types of readings was used as the model training
data, and the remaining 25% as the test data. This allowed
for the model to be trained on most users while intentionally
leaving out several users to then validate the model.

The performance of each random forest for each reading
type is outlined in Table V. Note that RF4 for the phone has
no entries because there are no eating activities where the
phone was considered of importance.

Accuracy Kappa 95% Confidence Interval
RF1 - pa 81.03 0.80 (79.85, 82.17)
RF2 - pa 95.80 0.95 (94.52, 96.84)
RF3 - pa 84.13 0.82 (83.02, 85.19)
RF4 - pa NA NA NA
RF1 - pg 60.04 0.58 (58.58, 61,48)
RF2 - pg 89.65 0.87 (87.82, 91.29)
RF3 - pg 65.89 0.61 (64.47, 67.28)
RF4 - pg NA NA NA
RF1 - wa 83.59 0.83 (82.46, 84.66)
RF2 - wa 84.87 0.84 (83.58, 86.09)
RF3 - wa 86.90 0.85 (85.87, 87.88)
RF4 - wa 89.56 0.88 (88.44, 90.60)
RF1 - wg 68.46 0.67 (67.06, 69.82)
RF2 - wg 70.89 0.68 (69.28, 72.46)
RF3 - wg 74.41 0.71 (73.10, 75.69)
RF4 - wg 79.44 0.76 (77.99, 80.83)

Table V
PERFORMANCE OF EACH RANDOM FOREST MODEL.

For each random forest model, the performance was
assessed by prediction accuracy, Cohen’s kappa coefficient,
and a 95% confidence interval. The accuracy column displays
what the percent agreement is between the predictions
made from the test data and the actual test data. The kappa
coefficient is a number that lies between 0 and 1 that gives
insight as to how many of your correct predictions may have
resulted by pure chance. A kappa closer to 1 indicates that
there is less chance that the prediction accuracy was due
to chance. Lastly, 95% confidence interval is the interval in
which the model accuracy will fall given a new validation set
with 95% confidence.

When comparing the features from the accelerometer
readings against the gyroscope readings, the accelerometer
outperformed the gyroscope. This is likely due to the fact that
gyroscopes and accelerometers are inherently different in how
they collect acceleration data. An accelerometer measures
the rate of change of velocity an object, while a gyroscope
maintains its orientation by allowing the freedom of rotation
and then measuring rotational changes in velocity. Therefore
the, rate of change of the linear velocity is a more important

factor than any rotational movements.

As expected, the phone features performed significantly
better when considering only the activities where the phone is
of importance (RF2-pa). A maximum classification accuracy
of nearly 96% was achieved when using only the phone
accelerometer data in the RF2 model. In addition, this
accuracy was not by chance since there was a high kappa
value of 0.95. The watch features performed slightly better
to the phone features when trying to predict all activities
at once. However, only marginal improvements were made
when considering only activities where the watch is of
importance (RF2-wa) against predicting all activities at once
(RF1-wa). So, even after filtering out phone activities, the
model struggled to reach a result as impressive as RF2-pa.
The causation for this absence of drastic improvement is
because of how similar the eating activities were to each other.

The differentiation between activities H, I, J, and L,
the eating activities, was the most difficult challenge
when considering any subset of data with the given
features extracted. About a 5% increase in accuracy was
observed between models RF1 and RF3 for each of the
4 types of readings when combining all eating activities.
Activity K, drinking from a cup, was equally as difficult to
distinguish from each of the eating activities. However, it was
intentionally left separate because a subject eating does not
necessarily imply drinking and vise-versa. If it were to be
included in the combination of eating activities, the accuracy
would likely increase by a few percent. Table VI shows
more performance measures for RF1-pa to demonstrate the
difficulty of differentiating between eating activities/drinking.

Precision Recall F1
Class: A 0.896 0.888 0.892
Class: B 0.948 0.979 0.963
Class: C 0.792 0.847 0.818
Class: D 0.779 0.801 0.790
Class: E 0.899 0.880 0.889
Class: F 0.876 0.847 0.861
Class: G 0.782 0.843 0.811
Class: H 0.833 0.785 0.809
Class: I 0.717 0.731 0.724
Class: J 0.787 0.613 0.689
Class: K 0.696 0.624 0.658
Class: L 0.752 0.719 0.735
Class: M 0.716 0.806 0.758
Class: O 0.734 0.806 0.768
Class: P 0.860 0.755 0.804
Class: Q 0.861 0.905 0.882
Class: R 0.815 0.889 0.851
Class: S 0.864 0.877 0.871

Table VI
EXTRA PERFORMANCE MEASURES FOR RF1-PA.

For activities H, I, J, K, and L, the recall and F1-score
are much lower in comparison to the other activities. The
F1-score is the harmonic mean of the recall and the precision,
where a higher F1-score indicates better results. Therefore,

differentiating between tasks that entirely different is much
easier than trying to distinguish eating chips vs. eating pasta.

After each model was created and assessed, a variable im-
portance plot was created to identify the impact each variable
had in the training of the model, shown in Figure 20. Each
variable importance plot was slightly different when training
each forest, however they are largely very similar.

Figure 20. Variable importance plot for RF3-pa.

The feature that was most critical in the performance of
every model was the subject identifier, as demonstrated by
the left-hand panel of Figure 20. What matters most when
analyzing a single activity is the style in which each activity
is performed. For example, the features of one user while
walking is entirely different than another user while walking
despite the fact that they are performing the same exact
activity.

Every feature in every model contributed significantly
to the overall performance of the random forest models
thus signifying the simplistic features that were chosen are
appropriate when predicting subject activity.

In conclusion, simple feature extraction of time series
accelerometer and gyroscope data is sufficient in the prediction
of human activity. To further improve on the results in the
future, a support vector machine model can be created since
it is known that subject identity is an important variable,
thus pointing towards potential clustering. Comparing the
random forests with the SVM model could give insight
to more phenomena that are currently not apparent due
to the low interpretability of a random forest. In addition,
knowing the orientation of each device could improve

performance tremendously since the features dependent on
the axes were of high importance, such as the mean and
the maximum/minimum amplitude. Finally, increasing the
amount of overlap for the rolling window operation could
increase prediction accuracy, but the trade off would be an
increase model training time as the amount of feature data
being extracted would be substantially increased.

This project taught me what it was like to pursue a project
with absolutely no guidance. Independent learning was critical
to the project’s success. In addition, I learned valuable skills
in machine learning, statistics, and data analysis/visualization.

V. WEARABLE SENSING REHABILITATION DEVICE
SEPTEMBER 2020 - DECEMBER 2020

Today, there exists no successful device that allows stroke
patients to feel independent and motivated to continue their
rehabilitation exercises. Rehabilitation is a long and slow
process, often discouraging patients from recovering any lost
mobility. BrilliAnt, my newly established wearable sensing
device design team, is creating a smartwatch application
that will motivate the user via statistical measures, complex
movement quality algorithms, and fun and easy to use user
interface.

The application’s main focus is on the homepage, or
clockface, of a Fitbit Versa 3 or Fitbit Sense. On the
homepage, users will be presented with several features
including a motivational daily exercise streak counter,
notifications to perform their next exercise, countdown timer
for the next exercise, and movement quality progress graphs.

On the application homepage, the users can then begin a
workout via the start button (green button) that will allow
them to progress through a series of instructions that will
guide them through their exercise. In the process, there
are informational guidelines, tips on how to perform the
best possible exercise provided by medical professionals,
and motivational messages. Once an exercise is selected,
a warm up routine ensues followed by the final exercise.
Throughout the duration of the exercise, data from the
watch’s internal sensors such as the accelerometer, gyroscope,
orientation sensor, and more will be recorded. The recorded
data can then be directly piped to the team’s scientifically
validated algorithms to assess their exercise quality and
overall success. The algorithm’s main focus is on a movement
quality quantification algorithm named "spectral arclength"
or SPARC [3]. SPARC is used to measure the arc length
of the Fourier magnitude spectrum within an adaptive
frequency range. Essentially, it is used to calculate how
smooth an inputted signal is (in our case, the acceleration
profile for an arm movement) by considering the presence of
high frequencies as an indication of roughness in the signal.
Furthermore, SPARC is only valid for discrete movements, but
is usable across varying frequency ranges and is independent

(a) Ideal Design

(b) Current Design

Figure 21. Clockface/Homepage – Ideal Design vs. Current Design. The
current design is undergoing testing with the accelerometer API and a count
based off of a conditional statement. Simulated sensor values read "0" instead
of a sensible value.

of movement amplitude and duration.

In order to successfully use SPARC, the acceleration profiles
for the gyroscope and accelerometer must be segmented into
discrete movements. First, the data is arranged into a set of
arrays, one for each sensor. For example, the data for the
accelerometer will have values that are in each coordinate
direction, X, Y, and Z, with a corresponding time stamp.
Data analysis is then performed on the data for each unique
exercise in order to apply an appropriate filter and apply
signal processing techniques to extract relevant information.
The most successful filter to smooth out the signal noise
was a 10th order butterworth low pass filter. Once the
data is cleaned, it moves through a custom segmentation
algorithm that defines where the user’s repetitions are located
in the time domain. There are 3 main parameters that are

optimized for the segmentation: population size/window
size, time threshold, and variance magnitude threshold.
For each exercise, the ideal parameters are discovered via
a gridsearch in MATLAB to allow for the watch to only
compute segmentation based off of 3 simple parameter values.

(a) Segmentation Performance

Figure 22. Segmentation Performance (Red) overlaid on top of the movement
profile (Blue). Accuracy ranges between 80% and 95% depending on the
exercise and the patient’s degree of impairment.

Once the movements are segmented, the movement of the
patient can then be quantified with the SPARC algorithm.
When the workout concludes, the user will receive an exercise
breakdown such as quality over time, repetitions per minute,
and exercise duration. The user’s exercise statistics will then
be stored for motivational features on the clockface and,
with user approval, for usage by their assigned physician.
The motivational process can then be repeated whenever,
wherever with the ultimate goal of encouraging consistent
workouts and recovering overall motor skills of the arms.

Box & Block,
Impaired

Box & Block,
Unimpaired

Population Size 5 2
Amplitude
Threshold

.0004 .00037

Time Threshold 5 4
Segments Found 23 44
Actual Segments 25 44
Segment Error 8% 0%
SPARC Found -8.4 -6.54
Predicted SPARC -8 to -12 -8 to -12

Table VII
ANALYTICAL SEGMENTATION ALGORITHM PERFORMANCE AND SPARC

ALGORITHM PERFORMANCE FOR THE BOX & BLOCK EXERCISES.

This project taught me how to lead a team, apply knowledge
from coursework into an unguided design project, and learn
JavaScript, CSS, SVG, GitHub from a command line interface,
and Fitbit Studio independently.

VI. APPLIED MEDICAL - MANUFACTURING ENGINEERING
INTERNSHIP

SUMMER 2019

Note: In this section there will not be any provided
pictures, drawings, graphs, etc. because an NDA was signed
and will be respected. In addition, specifics about the products
I worked on and the details of company procedures will not
be disclosed.

Finishing my sophomore year of college, I decided
that pursuing an internship was the best way to discover
what subcategory of engineering would be best for me.
Thus, a manufacturing role was acquired so that I could gain
experience with industrial robots, design work, communicative
tasks, programming, and more. In essence, the role was a
great introduction to a wide variety of engineering tasks.

I joined the team in the plastics/polymers department
which focused on mass producing disposable, cheap, and
sanitary medical devices. The goal was to provide affordable
medical devices so that people all over the world could have
access to top of the line medical products. In this internship,
my duties mostly consisted of the design and manufacturing
of end-of-arm tooling (EOAT) for robotic arms, fixtures for
product assembly, and devices that aid in the manufacturing
process.

Designing the end-of-arm tooling required innovative
design work followed by rigorous testing and methodological
verification. In general, other team members would design
a medical device and its corresponding mold cavity for a
specific surgical need and then pass it on to my team for
manufacturing and testing. Given the mold cavity, product
specifications such as geometric restrictions, critical part
dimensions, surface conditions, array layout, and more had to
be taken into consideration. Once all of the specifications were
identified and accounted for, I designed an EOAT located on
a robotic arm that would remove the devices from the mold
cavity without damaging, warping, or contaminating the part,
trim any and all excess plastic (runners), and then transport
the devices to a storage bin. The process had to be repeatable
for autonomous operation and must operate as efficiently as
possible. In my brief 2.5 month internship, three successful
EOAT devices were completed, all of which are still being
used in production, that could automate the injection and insert
molding process for newly designed parts created by the team.

Once an EOAT was successfully designed, manufactured,
and placed on the assembly line, I worked on part verification
and product assembly. In the polymers department, there
were injection molded parts and insert molded parts that
needed to pass strict specifications to qualify as safe medical
devices. Thus, I designed fixtures and devices to aid in
product assembly, inspection, and verification for quality
control. Here, I created an inspection method using a fixture I

designed that brought part failures down from 50% to 12-15%.

Overall, the internship was a great experience in which I
learned a lot about design, communication, and manufacturing.
However, the medical device industry proved to be too slow
and restrictive for my personality. My favorite part of the job
was working on the EOAT devices because I had the freedom
to design and manufacture as I see fit. Because the tooling was
integrated with a robotic arm, I became fascinated in more
complex robots and how they operate (i.e the brains, such as
the code that controls and manipulates the robotic arms). In
the end, the internship gave me insight into what interested
me most – robotics.

VII. PAYLOAD DELIVERY DRONE
JANUARY 2018 - MARCH 2018

A video of this project during our first flight can be found
by clicking HERE.

The objectives of this project were to construct a
functioning quadcopter for under $500 within the given time
frame (10 weeks) that had an autonomous payload delivery
system. The payload system was under separate constraints
where the sensors must detect a color, either red or blue, at
about a distance of about 150 cm; from there it then must
drop one of two balls depending on the color of the target.
The team wanted to provide a quadcopter that could be used
recreationally and professionally, like for delivery services or
military medical assistance on the battlefield.

The following were the design requirements:
• Motor to motor distance no longer than 14 inches
• The only permitted fabrication materials. are woods,

plastics, or carbon fiber. No metal frames.
• Structures must be fabricated by scratch.
• Internal combustion engines are prohibited.
• Quadcopter must be able to fly for 5 minutes without

recharging the battery at an altitude of 2-6 feet, no higher
than 8 feet.

• Propeller guards at least a half inch out from the tip
of the propeller must cover at least a quarter of the
circumferential distance

• Expenditures must total $500 or less
For the design, the weight of the quadcopter had to be taken

into consideration in order to select the right motors and create
the optimal sized frame. The equation for trust is as follows:

T = 2(
sg

16
[

√
(1 +

64

3sg
∗ θ) − 1])2 ∗ ρ(ΩR)2A (1)

Where s is the distance between motors, g is gravitational
acceleration, theta is the pitch, rho is the air density, R is the
propeller radius, and A is the quadcopter area.

The experimental value of thrust for A Sunny Sky 1500
motor was 500 g at 8 amps for one motor with an 8 inch
propellor and 370 g at 5 amps. So at 8 amps, 4 Sunny Sky

https://youtu.be/3zlCWEGyRgc

1500 motors can lift 2000 grams. The quadcopter holding
an Arduino and all essential components was measured to
be 1211.2 grams fully assembled, so the thrust to weight
ratio is 2000g/1211.2g = 1.651. This means that in order to
lift off, 61% throttle must be used. (1/1.651). By using the
experimental value of thrust in grams, the thrust for one motor
is 4.9N. For four motors, the thrust is 19.6N theoretically.

The battery has a capacity of 3000mAh = 3Ah. So,
charge/discharge time = (3Ah)/(32 amps) = .09375 hours =
5.625 minutes flight time while running a consistent 8 amps,
which satisfies the design requirement.

Next, the frame was designed and constructed according
to specs from the thrust equation and design parameters. The
basic form of the quadcopter became two polycarbonate sheets
separated by 3 inch standoffs. The 3 inches of space in the
body of the quadcopter allow for placement of the all essential
components and electrical wiring: 2 boxes to contain the
balls, NAZA flight controller, Arduino, both servo motors, the
receiver, and the regulator. The Naza, receiver, and regulator
all fit in between the ball (payload) housing which hung
slightly off of the sides of the quadcopter. In addition, there
are two slots bored out of the bottom plate to thread velcro
straps through in order to hold the battery below the bottom
plate. The propeller guards were originally half-circles with
only a 1 inch outer lip, but when assembling the frame, it was
decided the guards would structurally benefit from extending
that lip down the center as seen Figure 23. In order to hang the
Arduino upside-down, electrical wire was threaded through the
4 holes in the Arduino and top plate of the quadcopter. The
landing gear became 4 wiffle balls zip tied to the bottom piece
of polycarbonate. The PiXY camera and ultrasonic sensor were
mounted to a 3D printed bracket. For more stability, the team
found it suitable to include most of the weighty components
at a level under the motors.

Figure 23. Final Solidworks design

The quadcopter then passed the durability test post
construction by surviving a 7 foot drop. Next, a tilt test

was performed to ensure the stabilization of each motor was
performing properly from the flight controller. Once the tilt
test was passed, a test flight sans payload equipment verified
the quadcopter flew as expected.

Finally, the payload delivery system was coded in Arduino.
The code was basic as it only required color detection from
a PiXY camera which then actuated one of two servo-motors
depending on the perceived color (red or blue). Once the
code was written, the payload equipment was mounted to the
frame of the quadcopter and tested during flight.

This was the first successful hands-on project I worked
on with a team during my undergraduate education. At this
point, I was unfamiliar with coding, manufacturing, testing
procedures, and proper communication within a design team.
This project exposed me to all of the above, thus justifying
its place on my portfolio. In addition, the success of the
quadcopter put it at 1st place in the timed flight competition
among other UC Irvine students.

VIII. TACTICAL SHOTGUN - SOLIDWORKS PROJECT
APRIL 2018 - JUNE 2018

Instead of a text-based explanation, I made a fun, brief
YouTube video showing my creation found by clicking HERE.

ACKNOWLEDGMENTS

I especially thank Professor Donald Dabdub for his inspi-
ration in my life and his influence on my career ambitions.
His mentorship and friendliness has changed my perspective
on countless subjects. Thanks to my peers Felix Slothower,
Jonathon Palafoutas, Matthew Polcyn, Patrick Youssef, Eric
Abdulaziz, Abdullah Jawhar, Patrick Kelley, Joseph Parra,
Matthew Wong, Kristen Rosenberg, Myriam Khalil, Sara Lip-
pert, and many others in provoking new ideas and thoughtful
conversations in my undergradute studies. I would like to
thank all of the professors who helped me along the way,
including Professor Jabbari and Professor Reinkensmeyer for
their willingness to go the extra mile for me. I thank my family
for supporting me every step of the way.

REFERENCES

[1] M. Trojnacki, “Dynamics model of a four-wheeled mobile robot for
control applications–a three-case study,” in Intelligent Systems’ 2014.
Springer, 2015, pp. 99–116.

[2] G. M. Weiss, K. Yoneda, and T. Hayajneh, “Smartphone and smartwatch-
based biometrics using activities of daily living,” IEEE Access, vol. 7, pp.
133 190–133 202, 2019.

[3] “A Robust and Sensitive Metric for Quantifying Movement Smoothness,”
accessed: 09-2020. [Online]. Available: doi:10.1109/TBME.2011.
2179545

https://www.youtube.com/watch?v=RpGtq76aoV4
doi: 10.1109/TBME.2011.2179545
doi: 10.1109/TBME.2011.2179545

	I Introduction
	II Robotic Arm Simulations
	III Autonomous Lane Following Robot
	III-A Problem
	III-B Our Solution

	IV Activity Prediction - Machine Learning Model
	V Wearable Sensing Rehabilitation Device
	VI Manufacturing Engineering Internship
	VII Payload Delivery Drone
	VIII Tactical Shotgun - Solidworks Project
	References

